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End-to-end Congestion Control

● Network congestion may occur when 
a sender overflows the network with 
too many packets

● End-to-end congestion control relies 
on limited information, e.g., round-trip 
time (RTT), packet loss rate.
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Figure source: https://www.noction.com/blog/tcp-transmission-control-protocol-congestion-control



Contributions

● Take a step forward to the open problems raised by Karp et al. in 
FOCS 2000 to have a further understanding of the competition 
nature of end-to-end congestion control

● Swap-regret-minimization as a design concept or building block for  
congestion control algorithms
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Two-agent Game Models [Karp et al., 2000]

● Game is repeated for T rounds

● Flow decides packet sending rate

● Adversary decides the available network 
bandwidth (not revealed to the flow)

○ Static case: fixed over time

○ Dynamic case: change over time, even adaptively

● Then, the flow received a utility as a result of 
the packet sending rate and available network 
bandwidth
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https://app.diagrams.net/?page-id=3gkEqBbr644jZ8pp4qZJ&scale=auto#G1Dt42upA6zxQ-hiiXuacjD46pafiaFaxh


Open Problems Raised by Karp et al. (2000)

● The dynamic of the available 
network bandwidth is a joint result 
of the competition among multiple 
flows

● Randomized algorithms to address 
the dynamic network bandwidth
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https://app.diagrams.net/?page-id=3gkEqBbr644jZ8pp4qZJ&scale=auto#G1r3nEOXaLTl6okaotwo-tkLLorxKtO937


A Step Forward: Unknown Games with Bandit Feedback

● Unknown games (black-box games):

○ Each agent does not know the number, actions, and feedback of other agents
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A Step Forward: Unknown Games with Bandit Feedback

● Unknown games (black-box games):

○ Each agent does not know the number, actions, and feedback of other agents
○ Each agent does not know the underlying game structure
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https://app.diagrams.net/?page-id=gLOSrh3dioOwWCuaYvKE&scale=auto#G1LWy2IS9jNwa3smc6qvgKqB7rDcAP18UH


A Step Forward: Unknown Games with Bandit Feedback

● Unknown games (black-box games):

○ Each agent does not know the number, actions, and feedback of other agents
○ Each agent does not know the underlying game structure
○ Each agent can only observe the feedback of the played action (bandit feedback), which is 

a joint result of all agents’ actions
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https://app.diagrams.net/?page-id=gLOSrh3dioOwWCuaYvKE&scale=auto#G1gllY-BFxzKKVxNTb-sIzHnkLPnRdKB00


Correlated Equilibrium

The joint distribution of all agents’ actions is a correlated equilibrium if no one is 
willing to deviate
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End-to-end Congestion Control as Unknown Games
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Agent: Data flows

Actions: Congestion Window / Sending Rate

Utility: Reward functions considering 

      throughput and RTT

● The number of data flows may not be known a priori
● The actions of other data flows cannot be observed
● The only observed thing is the feedback such as  packet loss and rtt, which 

can help calculate the utility



Objective 1

● Be as good as always playing the optimal action in hindsight by minimizing 
the “external regret”:
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Objective 1

● Be as good as always playing the optimal action in hindsight by minimizing 
the “external regret”:

13

utility observed by 
always playing w’

Actions set for agent n 

Action played by agent n 
in round t

Actions played by agents other than 
agent n 

utility observed by agent n 
playing a learning algorithm



● Converge to the correlated equilibrium by minimizing the “internal regret”:

Objective 2
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● Converge to the correlated equilibrium by minimizing the “internal regret”:
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15

Actions set for agent n 

Action played by agent n 
in round t

Actions played by agents other than 
agent n 

The reward of playing w’



● Converge to the correlated equilibrium by minimizing the “internal regret”:

Objective 2
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Swap Regret

Minimize the external and internal regret simultaneously:

17

Actions set for agent n 

Action played agent n in 
round t

Actions played by agents other than 
agent n 



Swap Regret

Minimize the external and internal regret simultaneously:

18

Actions set for agent n 

Action played by agent n 
in round t

Actions played by agents other than 
agent n 

Rewards observed by the 
learning algorithm



Swap Regret

Minimize the external and internal regret simultaneously:
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Main Idea of The LUC algorithm
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Rate 1 Rate 2 Rate Cn

The probability of choosing action (cwnd/rate) w

The probability of choosing w’ instead of choosing w

…
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Rate 1 Rate 2 Rate Cn…

By calculating the stationary distribution, we obtain the selection distribution 



Analytical Results

Theorem 1: Swap regret is bounded by

with probability at least 1- δ 
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The number of actions



Theorem 2: If every flow plays LUC for T rounds, the empirical distribution of the 
joint actions  played by all flows

is an ε-correlated equilibrium with probability at least 1- δ
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Emulation Results

We have implemented LUC in Linux Kernel 5.4.0 based on the congestion control 
plane, a new API for writing congestion control algorithms.

Compare with CUBIC, BBR2

Emulation on Mininet, link capacity 50mbps
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Dumbbell Result

● When both flows adopt LUC, they can achieve the similar performance 25



● LUC is competitive and TCP-friendly
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Limitations and Future Works

● Relax the assumptions that all flows can finish a transmission in each round

● Address the large action set in real-world communications

● Apply the swap-regret-minimizing technique as a building block to improve 
other algorithms such as BBR
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Thanks
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Backup Slides
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Single-agent MABs vs Multi-agent MABs
Single-agent MAB:
● The reward/loss of actions in round t is determined at the beginning of round 

t

Multi-agent MAB:
● The reward/loss of actions in round t is determined by the end of round t due 

to the dependence on all agent’s actions

30



LUC
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Time and Space Complexity

For each agent n, the time complexity is dependent only on its own action set Cn

Time complexity:

Space complexity: 
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