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Abstract

In this paper, we study a multi-agent bandit prob-
lem in an unknown general-sum game repeated for
a number of rounds (i.e., learning in a black-box
game with bandit feedback), where a set of agents
have no information about the underlying game
structure and cannot observe each other’s actions
and rewards. In each round, each agent needs to
play an arm (i.e., action) from a (possibly differ-
ent) arm set (i.e., action set), and only receives the
reward of the played arm that is affected by other
agents’ actions. The objective of each agent is to
minimize her own cumulative swap regret, where
the swap regret is a generic performance measure
for online learning algorithms. We are the first to
give a near-optimal high-probability swap-regret
upper bound based on a refined martingale analy-
sis for the exponential-weighting-based algorithms
with the implicit exploration technique, which can
further bound the expected swap regret instead
of the pseudo-regret studied in the literature. It
is also guaranteed that correlated equilibria can
be achieved in a polynomial number of rounds if
the algorithm is played by all agents. Furthermore,
we conduct numerical experiments to verify the
performance of the studied algorithm.

1 INTRODUCTION

The multi-armed bandit (MAB) is a theoretical model for
online learning problems. The name comes from imagining
a gambler needs to play one of the arms on a slot machine
in each round. If an arm is played, then the gambler will
receive a random reward. The objective of the gambler is to
accumulate as many rewards as possible within T rounds.
As the information about which arm can return the high-
est rewards is not a prior knowledge, the gambler faces a

dilemma in each round between playing the currently best
arm (i.e., exploitation) or playing other arms to learn more
about their rewards (i.e., exploration).

To adapt to more complex scenarios in reality, many variants
of MABs have been proposed. In this paper, we study a vari-
ant called multi-agent bandits in an unknown general-sum
game (MAB-UG), motivated by many real-world problems
such as end-to-end congestion control in computer networks.
In this case, each host has no information about others and
needs to choose a transmission rate, hoping to maximize
its throughput without congesting the network. Another
example is the medium access control in wireless commu-
nications, where a set of devices need to access a shared
communication channel to send packets in each time slot.

The MAB-UG setting can be referred to as the black-box
game studied in Nax et al. [2016], where a set of agents N ,
each associated with Kn (possibly different) arms (i.e., ac-
tions), are playing an unknown general-sum game repeated
for T rounds. All agents have no information about the
structure of the underlying game and cannot observe each
other’s actions and rewards. In each round, each agent needs
to play an arm atn from an arm set An, and observes the
corresponding reward/loss.

The only information is the observed reward/loss for their
own played arm in each round. Thus, each agent is facing
a non-stochastic multi-armed bandit problem with adap-
tive (i.e., non-oblivious) adversaries. The objective for each
agent is to accumulate as many rewards as possible and the
empirical joint distribution of all agents’ actions reaches an
ϵ-correlated equilibrium [Aumann, 1974], a concept more
general than the well-known Nash equilibrium, within T
rounds. Intuitively, the ϵ-correlated equilibrium is a state
that the expected incentives (e.g., the reward difference) for
each agent to deviate from a suggested action are no more
than ϵ ≥ 0, where the expectation is taken with respect to
the joint distribution of all agents’ actions.

As each agent has very limited knowledge about the envi-
ronment and can only learn from the rewards of the played
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arm that is affected by others’ actions in each round, the
algorithm to address MAB-UG must be carefully designed
to balance the tradeoff between exploration and exploitation.
The performance of an algorithm is usually measured by
regret. The most oft-used definition of regret in the bandit
literature is called the external regret [Cesa-Bianchi and
Lugosi, 2006, Lattimore and Szepesvári, 2020], which mea-
sures the performance loss of an algorithm against a set of
competitors always playing a fixed action. However, mini-
mizing the external regret is not enough for MAB-UG, as
another objective is to achieve the ϵ-correlated equilibrium.
Fortunately, it is proved in Hart and Mas-Colell [2000],
Cesa-Bianchi and Lugosi [2006] that if every agent plays
an algorithm that minimizes internal regret, then the empiri-
cal joint distribution of actions converges to an ϵ-correlated
equilibrium. The internal regret is defined to be the perfor-
mance loss for an algorithm that plays arm a instead of
playing another arm a′. In this paper, we study a stronger
regret notion called swap regret introduced by Blum and
Mansour [2007], which is a generalization of the above two
regrets, comparing the performance of a learning algorithm
against a larger set of competitors. The swap regret uses
swap functions F that take the arms played by an algo-
rithm as input and output the arms to be compared. Thus, by
changing the swap functions, the swap regret can boil down
to external regret and internal regret.

The swap regret has been extensively studied in
terms of pseudo-regret (or weak regret) [Blum
and Mansour, 2007, Stoltz, 2005, Ito, 2020], i.e.,

max
F

E

[
T∑

t=1

∑
a∈An

1[atn = a]ra,F (a)

]
, where ra,F (a) is

the instantaneous swap regret with arm a and swap
function F , and conditionally expected swap regret [Jin

et al., 2022], i.e., max
F

T∑
t=1

∑
a∈An

ptara,F (a), which also

bounds the pseudo-regret by taking expectation on the
randomness of algorithms. However, bounding the above
regret can only guarantee the expected swap regret (i.e.,

E

[
max
F

T∑
t=1

∑
a∈An

1[atn = a]ra,F (a)

]
) is bounded when

adversaries are not adaptive (i.e., oblivious) [Audibert and
Bubeck, 2010], but each agent in MAB-UG is facing other
agents as adaptive adversaries. Thus, a more meaningful but
challenging bound is on the instantaneous swap regret (i.e.,

max
F

T∑
t=1

∑
a∈An

1[atn = a]ra,F (a)) for any sequence of ac-

tions and rewards, which is helpful not only to equilibrium
convergence but also to the bound of the expected swap
regret with respect to all agents’ randomness.

The main contribution of our work is to give an instanta-
neous swap regret analysis for the exponential-weighting-
based algorithms called learning for correlated equilibrium
with implicit exploration (LCE-IX). LCE-IX is based on

the swap-regret-minimizing framework proposed by Blum
and Mansour [2007], and the main idea is to call Kn

exponential-weighting-based algorithms with the Implicit
eXploration (IX) technique [Kocák et al., 2014, Neu, 2015]
as subroutines. Then, the probability of selecting an arm
is obtained by the Markov steady-state distribution of the
Markov process among Kn subroutines, and the reward/loss
is proportionally fed to the subroutines for updates.

However, the existing concentration inequality for the IX
technique cannot be simply applied to the analysis of swap
regret. The main difficulties are twofold. First, the swap
regret is only equivalent to the sum of the external regret
for subroutine algorithms in expectation. In this sense, the
existing concentration inequality for IX can only give a high-
probability bound on the conditionally expected swap regret.
When we analyze the instantaneous swap regret, we cannot
convert it directly to the sum of the instantaneous external
regret for subroutine algorithms. Second, the reward/loss
of each arm is a result of all agents’ actions, which is not
determined at the beginning of each round as in the single-
agent bandit setting (see more discussions in Sec. 3).

To address this problem, we prove a novel general-form
concentration inequality between the IX loss estimator and
the swapped loss based on a refined martingale analysis by
treating the Kn subroutine algorithms as a whole. Based on
this concentration inequality, we show that with probability
at least 1− δ for δ ∈ (0, 1), the instantaneous swap regret is
bounded in O(Kn

√
T log(Kn/δ)) for each agent n ∈ N .

Furthermore, by integrating the tails of this high-probability
bound for the instantaneous swap regret, we show the ex-
pected swap-regret bound is in O(Kn

√
T log(Kn)) with

respect to all agents’ randomness. The above swap-regret
bounds are near-optimal with an O(

√
Kn) gap from the

swap-regret lower bound by Ito [2020] for a related model. It
is also guaranteed that LCE-IX can converge to ϵ-correlated
equilibria for unknown general-sum games in a polynomial
number of rounds if the algorithm is played by all agents.
Numerical experiments verifies the performance of LCE-IX.

The rest of the paper is organized as follows. In Sec. 2, we
review the works that are most related to MAB-UG. The
problem settings are described in Sec. 3. The LCE-IX algo-
rithm is proposed in Sec. 4, with analytical results presented
in Sec. 5. The experiment results are shown, compared and
discussed in Sec. 6. Sec. 7 concludes the paper. The detailed
proofs of the swap-regret upper bound are deferred to the
Appendix in the supplementary materials.

2 RELATED WORKS

Multi-agent bandits: Multi-agent bandits consider a group
of agents participating in decision making, and aim to im-
prove learning efficiency through collaborations. The works
about multi-agent bandits are mainly focused on improv-



ing rewards by communication [Buccapatnam et al., 2015,
Chakraborty et al., 2017, Kolla et al., 2018, Vial et al., 2021],
identifying the best arm to avoid collision [Bubeck et al.,
2020, Liu and Zhao, 2010, Hillel et al., 2013, Szorenyi et al.,
2013, Jamieson and Nowak, 2014], and voting for playing
arms [Dubey et al., 2020]. All the above bandit settings
assume the arm set for each agent is identical, and the re-
ward for an agent does not depend on the actions of other
agents, or just follows a simple collision model. MAB-UG
considers (possibly) varied arm sets for different agents and
more general competitions among agents.

Learning in games: The history of learning in games can be
traced back to the fictitious play for the two-player zero-sum
games [Brown, 1949, Robinson, 1951]. Nevertheless, such
a fictitious play requires that the decisions of opponents can
be observed, and thus it cannot be applied to the unknown
games where the agents can only observe their own out-
comes (or rewards). To address the challenges of unknown
games, online learning has been introduced by many works
for specific games such as potential games [Coucheney et al.,
2015, Cohen et al., 2017, Bielawski et al., 2021, Mguni et al.,
2021], and mean-field games [Min and Hu, 2021, Wang
et al., 2021, Xie et al., 2021]. However, the above solutions
for specific games depend on corresponding properties (e.g.,
potential functions for potential games), and thus cannot be
easily extended to the general-sum games. Thus, we focus
on the learning in the unknown general-sum games (i.e.,
black-box games [Nax et al., 2016]), which is a basic case
of learning in general-sum Markov games [Littman, 1994].

Regarding the unknown general-sum games, there are
mainly two lines of research depending on the observabil-
ity of rewards. If the reward of an action can be observed
regardless of whether it is played or not, we call it the full-
information model [Cesa-Bianchi and Lugosi, 2006], and
if only the reward of a played action can be observed, then
it is the partial-information model (i.e., bandit feedback).
Recent years have witnessed steady progress in learning
general-sum games in the full-information model [Krichene
et al., 2015, Palaiopanos et al., 2017, Chen and Peng, 2020,
Daskalakis et al., 2021, Anagnostides et al., 2022, Farina
et al., 2022]. However, the results for the full-information
model cannot be easily extended to the partial-information
model, as less information is observed in each round, which
makes the partial information model more challenging.
The first work that addressed the unknown general-sum
games with bandit feedback is Auer et al. [2002], where
an exponential-weighting-based technique is proposed to
minimize the external regret. However, it is typically one of
the goals in general games to search for correlated equilibria,
and it is shown in Cesa-Bianchi and Lugosi [2006] that only
minimizing external regret cannot achieve this goal.

Blum and Mansour [2007] generalized the notion of exter-
nal and internal regrets to the swap regret, and proposed a
polynomial-time swap-regret-minimizing framework based

Table 1: Swap-regret bounds for exponential-weighting-
based algorithms with bandit feedback

Upper bound, Computational cost, Regret notion Lower bound

O
(√

TK3
n log(Kn)

)
, poly-time, pseudo-regret [Blum and Mansour, 2007] Ω

(√
TKn

)
[Blum and Mansour, 2007]

O
(√

TK2
n log(Kn)

)
, exp-time, pseudo-regret [Stoltz, 2005]

O
(√

TK2
n log(Kn)

)
, poly-time, pseudo-regret [Ito, 2020] Ω

(√
TKn log(Kn)

)
[Ito, 2020]

O
(√

TK2
n log(Kn/δ)

)
, poly-time, conditionally expected regret [Jin et al., 2022]

O
(√

TK2
n log(Kn/δ)

)
, poly-time, instantaneous regret (our work, Theorem 5.3)

O
(√

TK2
n log(Kn)

)
, poly-time, expected regret (our work, Theorem 5.4)

on Kn external-regret-minimizing subalgorithms, where
Kn is the number of arms. They proved that if the external
pseudo-regret of each subalgorithm can be represented by a
concave function r(T ), where T is the time horizon, and if
the dependency on Kn is ignored in r(T ), the swap pseudo-
regret of their proposed algorithm is Kn · r(T ). Therefore,
as each exponential-weighting subalgorithm has an external-
pseudo-regret bound of r(T ) = O(

√
TKn log(Kn)) [Auer

et al., 2002], the analysis of Blum and Mansour [2007] gives
a pseudo-regret bound of O(Kn

√
TKn log(Kn)) for their

proposed algorithm.

Later, this bound was improved by Stoltz [2005] to
O(Kn

√
T log(Kn)) but with an exponential computation

complexity. On the other hand, Ito [2020] improved the
upper bound for the swap pseudo-regret to Kn · r(T/Kn)
with a polynomial-time algorithm by adding another layer
of randomness to the original framework [Blum and Man-
sour, 2007], where in each round only one subroutine is
selected according to the calculated Markov steady distri-
bution. The selected subroutine selects an arm, and the re-
ward will be entirely fed to this subroutine algorithm for
updates. The modified framework gives a pseudo-regret of
O(
√

TK2
n log(Kn)) for the exponential-weighting-based

subalgorithms.1 It was also proved by Ito [2020] that
the lower bound for swap regret is Ω

(√
TKn log(Kn)

)
,

which is tight in the full-information but not partial-
information models. Recently, Jin et al. [2022] proved a
high-probability bound of O(Kn

√
T log(Kn/δ)) for the

conditionally expected swap regret, which can bound the
pseudo-regret by integrating the tails. Table 1 gives a sum-
mary of the swap-regret bounds for exponential-weighting-
based algorithms with bandit feedback.

Thus, we are the first to prove a high-probability bound of
O(Kn

√
T log(Kn/δ)) for the instantaneous swap regret

and bound the expected swap regret in O(Kn

√
T log(Kn))

with respect to all agents’ randomness, which is near-
optimal because of an O(

√
Kn) gap from the swap-regret

lower bound [Ito, 2020] despite for full-information models.

1The swap regret for the modified framework by Ito [2020] can
be tighter if mirror descent algorithms [Zimmert and Seldin, 2019]
are used. However, in this paper, we only discuss the swap-regret
bound for the exponential-weighting-based algorithms.



3 PROBLEM FORMULATION

3.1 THE MAB-UG MODEL

In MAB-UG, the reward of each agent’s action will be
affected by the actions of other agents, and each agent has no
prior knowledge about the environment such as the number
of agents, the reward of each action, and the actions of other
agents. A simple example of MAB-UG with two agents and
two arms for each agent is shown in Fig. 1, where in the
current round, Agent 1 plays arm a and only observes a
normalized reward of 0.8, and Agent 2 plays arm c and only
observes a normalized reward of 0.2. Both agents have no
information about the arm played by the other agent, nor
the rewards of the arms that are not played.

Arm a

Agent 1

Arm b

Arm c
Agent 2

Arm d

0.8

0.2

?

?

?

?

?

?

Figure 1: An example of MAB-UG with two agents and two
arms for each agent.

Formally, let N := {1, . . . , N} be the set of all agents and
each agent n ∈ N is associated with a finite set of arms (i.e.,
actions) An with size Kn. The arm set for each agent is
not required to be identical. Let A :=

∏
n∈N

An be the space

of all such arm sets, and A ∈ A be an action profile (i.e.,
a vector of all agents’ actions). The reward for agent n
playing arm atn ∈ An in round t is determined by function
un : A → [0, 1], which maps the actions of all agents to
agent n’s rewards un(a

t
n;At

−n).
2 Note that our algorithm

and analyses also work for a time-varying reward function
ut
n. In addition, ut

n can be determined in either an oblivious
way or a non-oblivious (i.e., adaptive) way, corresponding
to the oblivious adversary or the non-oblivious adversary
in the single-agent bandits. In an oblivious way, {ut

n}t>0

is chosen at the beginning of the game, while in a non-
oblivious way, each ut

n is determined conditioned on all the
agents’ actions in the past.

One of the main differences between multi-agent bandits
and single-agent bandits is the measurability of the rewards.
If we are in the single-agent bandits, regardless of whether

2(at
n;At

−n) is an abbreviation of At := (at
1, . . . , a

t
n, . . . , a

t
N )

with a highlight of agent n’s action an against other agents’ ac-
tions.

ut
n is determined obliviously or non-obliviously, the reward

of each arm in each round t is determined at the beginning
of that round, before the agent plays an action. However, in
the multi-agent bandits, as the reward of each arm for each
agent is conditioned on other agents’ actions, the reward
of each arm in each round cannot be determined until all
agents have played an action in that round.

Let U := {u1, . . . , uN} be the set of reward functions for
N agents. Note that neither N nor U is a prior knowledge
to each agent, and each agent n only knows in advance her
own set of arms An.

In each round t = 1, . . . , T , each agent n ∈ N can use
a mixed strategy to play an arm atn ∈ An according to a
probability distribution over arms P t

n := {pta : ∀a ∈ An},
i.e., play arm a ∈ An with probability pta. Then, each agent
n can only observe her own instantaneous reward Xt

n :=
un(a

t
n;At

−n).
3 Both the actions and the number of other

agents cannot be observed. The objective of each agent is to
accumulate as many rewards as possible over T rounds.

3.2 PROBLEM FORMULATION

As each agent has little knowledge about the environment,
it is inevitable for each agent to suffer a regret, i.e., the loss
of rewards for not playing the optimal arm in hindsight that
returns the highest cumulative rewards. In bandit problems,
the problem of maximizing the cumulative reward is always
converted to the problem of minimizing the regret. The no-
tion of regret has many forms. The most oft-used regret in
the bandit literature is the external regret Cesa-Bianchi and
Lugosi [2006]. Let 1[atn = a] be the indicator function that
returns 1 if a is the played arm in round t and 0 otherwise.
The external regret Rext

n (T ) for agent n compares the cu-
mulative reward of a learning algorithm with that of a set
of competitors that always play a fixed arm up to round T ,
which is defined as follows:

Rext
n (T ) := max

a′∈An

T∑
t=1

un(a
′;At

−n)−
T∑

t=1

∑
a∈An

1[atn = a]un(a;At
−n),

However, only minimizing the external regret cannot guaran-
tee the plays of agents will reach an equilibrium. Therefore,
we need a strictly stronger notion of regret that is the in-
ternal regret, which compares the actions of an agent in a
pair-wise manner:

Rint
n (T ) := max

a,a′∈An

T∑
t=1

rt(a,a′),n, (1)

where

rt(a,a′),n := 1[atn = a]
(
un(a

′;At
−n)− un(a;At

−n)
)

3For the convenience of algorithm description and analysis,
we sometimes use an equivalent notion called the instantaneous
loss, i.e., 1 − Xt

n, and denote by yt
n,a := 1 − un(a;At

−n) the
instantaneous loss function if agent n plays a ∈ An.



is the instantaneous regret for agent n of having played
arm a instead of arm a′ in round t. As proved in Hart and
Mas-Colell [2000], Cesa-Bianchi and Lugosi [2006], by
minimizing the internal regret for each agent, their empiri-
cal joint distributions of plays converge to an ϵ-correlated
equilibrium, which is defined as follows.

Definition 3.1. Let P be a joint probability distribution over
A. We say P is an ϵ-correlated equilibrium if the expected
incentive for each agent n to deviate from action a to any
other action a′ ∈ An is no more than ϵ ≥ 0, i.e., ∀n ∈ N ,
we have∑
(a;A−n)∈A

P((a;A−n)) (un(a
′;A−n)− un(a;A−n)) ≤ ϵ.

(2)

Note that P is the joint distribution, not the product dis-
tribution, which is the difference between the correlated
equilibrium and the Nash equilibrium. When ϵ = 0, P is
the correlated equilibrium, which is more general than the
well-known Nash equilibrium, as the correlated equilibrium
does not require independence among actions. To give an in-
tuition about the ϵ-correlated equilibrium, consider a case of
congestion control in computer networks where a mediator
(e.g., a router or switch) draws an action profile from P and
privately recommends each action (e.g., the packet sending
rate) to the corresponding host. If no host has an incentive of
more than ϵ to choose a different action, provided that other
hosts follow the mediator’s recommendation, then ϵ yields
an ϵ-correlated equilibrium. Our objective is to achieve an
ϵ-correlated equilibrium without a mediator by minimizing
the internal regret for each agent.

In this paper, we consider a more general notion of regret,
called the swap regret Blum and Mansour [2007], which
can unify both the external regret and internal regret into
the same framework by a swap function Fn : An → An

that takes a ∈ An as input and outputs a′ ∈ An. Let F be
a finite set of Fn. Then, the instantaneous swap regret for
agent n with F up to round T is defined as follows:

Rswa
n (T,F) = max

F∈F

T∑
t=1

∑
a∈An

1[atn = a]
(
un(F (a);At

−n)− un(a;At
−n)
)
.

(3)
We can boil down the swap regret to the external regret by
letting F be a set of Kn functions such that for any a ∈ An,
Fa ∈ F : An → a. Similarly, the internal regret can be
obtained by letting F be a set of Kn(Kn−1) functions such
that for any pair of a, a′ ∈ An, we have F(a,a′)(a) = a′

and F(a,a′)(a
′′) = a′′ for any other a′′ ∈ An. Thus, by

minimizing the swap regret of a learning algorithm for a
general F of any possible mappings F , we can show that
the learning algorithm has a bounded performance gap from
a broader range of competitors. We can also minimize the
internal and external regrets at the same time, and achieve
the ϵ-correlated equilibrium for all agents.

4 THE LCE-IX ALGORITHM

The LCE-IX algorithm adopts the swap-regret-minimizing
framework introduced by Blum and Mansour [2007] and
calls Kn Exp3-IX algorithms [Kocák et al., 2014, Neu,
2015] as subroutines. Each subroutine maintains a meta-
distribution, and the action selection probability is calcu-
lated from the meta-distributions. The observed reward or
loss will be assigned proportionally to each subroutine for
updating the meta-distributions.

For each agent n, we define a meta-distribution Qt
a :=

{qta,a′ : ∀a′ ∈ An} for each arm a ∈ An such that qta,a′ ∈
[0, 1] and

∑
a′∈An

qta,a′ = 1. Denote by Qt
n := [Qt

a]a∈An
the

Kn ×Kn matrix with each row being Qt
a. Then, we deter-

mine the sample distribution P t
n by solving the following

equations:

P t
n = P t

nQt
n, (4)

where P t
n is a row vector of pta,∀a ∈ An and

∑
a∈An

pta = 1.

That is, for each a ∈ An, we have pta =
∑

a′∈An

pta′qta′,a,

which is similar to the calculation of the stationary distribu-
tion of a Markov process with the transition matrix being
Qt

n. The intuition behind (4) is to make the probability of
playing arm a′ ∈ An directly according to P t

n be equivalent
to the probability of first sampling any arm a ∼ P t

n and then
playing a′ according to Qt

a.

The suffix ‘IX’ of LCE-IX stands for implicit exploration,
which is justified by the γt-biased reward estimator defined

as follows. Denote by Y t
a,a′ :=

1[at
n=a′]pt

aq
t
a,a′

pt
a′

(1−Xt
n) the

loss of arm a′ observed by subroutine a. Let γt be a non-
negative and non-increasing parameter over time t. We then
define the γt-biased estimated loss for Y t

a,a′ as follows:

Ŷ t
a,a′ :=

Y t
a,a′

qta,a′ + γt
.

This bias factor γt is introduced in Kocák et al. [2014], Neu
[2015], which is used to smooth the meta-distributions so
that the arms with low rewards in the past can still be chosen
occasionally for exploration.

In addition, we also consider the situation where T may not
be known a priori. Thus, we consider a non-increasing learn-
ing rate ηt, and the update rule for each meta-distribution is
defined as follows:

qt+1
a,a′ =

exp (−ηt+1L̂
t
a,a′)∑

a′′∈An

exp (−ηt+1L̂t
a,a′′)

. (5)

By the above modification, we have the LCE-IX algorithm
described in Alg. 1.



Algorithm 1 The LCE-IX algorithm

1: Input: n,An, ηt
2: // Initialization
3: Set q1a,a′ = 1

Kn
and L̂0

a,a′ = 0,∀a, a′ ∈ An

4: for t = 1, . . . , T do
5: // Compute the sample distribution, play arms and

observe rewards
6: Calculate P t

n based on (4)
7: Play an arm atn ∼ P t

n

8: Observe reward Xt
n

9: // Update each meta-distribution
10: for a ∈ Aa do
11: Y t

a,a′ :=
1[at

n=a′]pt
aq

t
a,a′

pt
a′

(1−Xt
n),∀a′ ∈ An

12: Ŷ t
a,a′ :=

Y t
a,a′

qt
a,a′+γt

,∀a′ ∈ An

13: L̂t
a,a′ = L̂t−1

a,a′ + Ŷ t
a,a′ ,∀a′ ∈ An

14: Calculate Qt+1
a based on (5)

15: end for
16: end for

5 ANALYTICAL RESULTS FOR LCE-IX

5.1 REGRET BOUND

As the regret analysis is for each individual agent n ∈ N ,
without confusion, we drop the subscript n in some no-
tations for brevity. Let Gt denote the σ-algebra gener-
ated by the history information of all agents up to round
t, i.e., Gt := σ

(
{a1n, r1n, . . . , atn, rtn}n∈N

)
. Denoted by

Ỹa,a′ := 1[atn = a]yta′ the swapped loss from a to a′, where
yta′ := 1−Xt

n. We first state a novel concentration bound for
the γt-biased loss estimator used in LCE-IX, which shows
that the cumulative gap between the biased loss estimator
Ŷ t
a,a′ and the swapped loss Ỹ t

a,a′ for each agent n ∈ N is
bounded with a high probability.

Lemma 5.1. Let δ ∈ (0, 1) and let βt
a,a′ be nonnegative

and non-increasing (over time t) Gt−1-measurable random
variables (i.e., given Gt−1, βt

a,a′ is determined) satisfying
βt
a,a′ ≤ 2γt for all pairs a, a′ ∈ An. With probability at

least 1− δ, we have the following inequality held:

T∑
t=1

∑
a∈An

∑
a′∈An

βt
a,a′

(
Ŷ t
a,a′ − Ỹ t

a,a′

)
≤ 2 log(

2

δ
) . (6)

Proof Sketch. We only give a proof sketch here, and
the detailed proof can be found in Appendix A in
the supplementary materials. First, we construct a se-
quence of random variables {Zt}t≥0, where Zt :=

exp

{
t∑

s=1
βs
a,a′

∑
a∈An

∑
a′∈An

(
Ŷ s
a,a′ − Ỹ s

a,a′

)}
for t > 0

and Z0 = 1, and then prove that {Zt}t≥0 is a supermartin-
gale with respect to filtration {Gt}t≥0, i.e., E [Zt|Gt−1] ≤

Zt−1. Finally, the lemma follows the Markov inequal-
ity.

The proof for Lemma 5.1 is refined beyond the IX concen-
tration bounds studied in Neu [2015]. The original approach
used in Neu [2015] is for external regret, but swap regret is
only equivalent to the sum of the external regret for subrou-
tine algorithms in expectation. Therefore, we cannot simply
adapt their concentration bound to analyze the instantaneous
swap regret. In addition, in the original concentration bound,
the probability is taken with respect to only one agent’s
randomness, which is not suitable for the MAB-UG set-
ting, as the reward/loss for each agent is dependent on all
agents’ actions. To address the issue, Lemma 5.1 considers
the Kn subroutines as a whole, and proves a supermartin-
gale between the sum of IX loss estimators for each meta-
distribution and the general swapped loss with respect to
all agents’ randomness. The following Lemma is a direct
result of Lemma 5.1, which is essential for the swap-regret
analysis.

Lemma 5.2. Let δ ∈ (0, 1). With probability at least 1− δ,
the following inequalities hold simultaneously:

T∑
t=1

∑
a∈An

∑
a′∈An

ηt

(
Ŷ t
a,a′ − Ỹ t

a,a′

)
≤ 2 log(

2

δ
), (7)

and for any F ∈ F ,

T∑
t=1

∑
a∈An

(
Ŷ t
a,F (a) − Ỹ t

a,F (a)

)
≤ 1

γT
log(

2 ·KKn
n

δ
). (8)

Proof. (7) is obtained by invoking Lemma 5.1 with βt
a,a′ :=

ηt for all a, a′ ∈ An. (8) is obtained by invoking Lemma 5.1
with βt

a,a′ := 2γT1[a
′ = F (a)] for all a, a′, F (a) ∈ An

and applying the union bound over all F ∈ F for at most
|F| = KKn

n swap functions.

The regret defined in (3) for each agent n ∈ N playing the
LCE-IX algorithm is guaranteed by the following theorem.

Theorem 5.3. Let δ ∈ (0, 1). With probability at least 1−δ,

ηt =
√

log(Kn)
t and γt = ηt/2, the instantaneous swap

regret for playing the LCE-IX algorithm over T rounds is
bounded as follows

Rswap
n (T,F) ≤ 4Kn

√
T log(Kn) +

(
2 +Kn

√
T

log(Kn)

)
log( 2δ ).

(9)

When ηt =
√

log(Kn)+log(Kn/δ)
t and γt = ηt/2, the above

bound becomes

Rswap
n (T,F) ≤ 3Kn

√
T (log(Kn) + log(2Kn/δ)) + log( 2δ ).

(10)



Proof Sketch. The regret defined in (3) can be rewritten in
the loss form and can be decomposed as follows:

Rswap
n (T,F) ≤

∑
a∈An

(LT
a −

∑
a∈An

L̂T
a )︸ ︷︷ ︸

=:(a)

+
∑
a∈An

(L̂T
a − L̂T

a,F (a))︸ ︷︷ ︸
=:(b)

+
∑
a∈An

(L̂T
a,F (a) − L̃T

a,F (a))︸ ︷︷ ︸
=:(c)

,

where LT
a :=

T∑
t=1

∑
a′∈An

Y t
a,a′ and L̂t

a :=

T∑
t=1

∑
a′∈An

qta,a′ Ŷ t
a,a′ are the cumulative instantaneous

and estimated loss allocated to meta-distribution Qt
a over T

rounds, respectively.

Then, we can bound (a) by
∑

a∈An

T∑
t=1

γt
∑

a′∈An

Ŷ t
a,a′ , which

is a straightforward result by the definition of Ŷ t
a,a′ and

(b) is bounded by Kn log(Kn)
ηT

+
T∑

t=1

ηt

2

∑
a∈An

∑
a′∈An

Ŷ t
a,a′

by a refined analysis for the exponential-weighting tech-
nique. Finally, invoking Lemma 5.2 can bound (c) and term
T∑

t=1
(γt +

ηt

2 )
∑

a∈An

∑
a′∈An

Ŷ t
a,a′ . The detailed proof can be

found in Appendix B in the supplementary materials.

Note that it is not required for all agents to play LCE-IX at
the same time to guarantee Theorem 5.3. The value of ηt
for the bound in (9) is independent of δ, which means the
bound holds for all δ. On the other hand, the high-probability
bound in (10) is improved when the algorithm can use a
fixed confidence level δ to tune its parameters. The former
bound, however, is useful for deriving an expected swap-
regret bound as shown in the following corollary.

Corollary 5.4. With ηt =
√

log(Kn)
t and γt = ηt/2, the

expected swap regret is bounded as follows:

E[Rswap
n (T,F)] ≤ 4Kn

√
T log(Kn)+2Kn

√
T

log(Kn)
+4

Proof. Let W :=
RT

n (T,F)−4Kn

√
T log(Kn)

2+Kn

√
T

log(Kn)

. By (9), we

have that Pr(W > log( 2δ )) ≤ δ. Then, integrating the
tail gives E[W ] ≤

∫ 1

0
2
δ Pr(W > log( 2δ ))dδ ≤ 2.

The expected swap regret is upper bounded in
O(Kn

√
T log(Kn)), which we claim is near-optimal

because there is a gap of O(
√
Kn) from the lower bound

of Ω(
√
KnT log(Kn)) proved in Ito [2020]. However, the

lower bound there is tight for the full-information model,
but may not be tight with the bandit feedback.

5.2 CONVERGENCE TO CORRELATED
EQUILIBRIA

If every agent involved in the game plays the LCE-IX algo-
rithm at the same time, the following theorem guarantees
that the empirical distribution P̂T of the joint actions con-
verges to an ϵ-correlated equilibrium.

Theorem 5.5. If every agent n ∈ N plays the LCE-
IX algorithm for T rounds, then the empirical distribu-
tion of the joint actions played by all agents P̂T is an ϵ-
correlated equilibrium with probability at least 1− δ, where

ϵ = O(max
n∈N

Kn

√
log(KnN/δ)

T ). When T → ∞, the empiri-

cal distribution of the joint actions converges to the set of
correlated equilibria almost surely.

Proof. Let δ′ > 0. By (10), with probability 1 − δ′,
Rint

n (T ) ≤ 3Kn

√
T (log(Kn) + log(2Kn/δ′))+log 1

δ′ for
agent n. By using the union bound over all the N agents and
letting δ′ = δ/N , we have that with probability at least 1−δ:∑
A:an=a

P̂T (K) (rn (a
′;A−n)− rn (A)) = 1

T R
int
n (T ) ≤

O(max
n∈N

Kn

√
log(KnN/δ)

T ). When T → ∞, by the Borel-

Cantelli Lemma, we have lim sup
T→∞

1
T R

int
n (T ) ≤ 0 almost

surely, which indicates the empirical distribution of joint
actions converges to the set of correlated equilibria.

Solving the equation ϵ = O(max
n∈N

Kn

√
log(KnN/δ)

T ) for T

implies that the empirical joint distribution P̂T for all agents
meets the definition of an ϵ-correlated equilibrium for the
unknown games after T = Ω(max

n∈N
K2

n log(KnN/δ)
ϵ2 ) rounds,

i.e., the equilibrium is achieved.

5.3 TIME AND SPACE COMPLEXITY

In each round, each agent needs first to calculate P t
n based

on (4), which can be regarded as the calculation of a sta-
tionary distribution for the Markov process defined by Qt

n,
and can be achieved within O(K2

n) for Kn states [Fein-
berg and Chiu, 1987]. Then, each meta-distribution needs
O(Kn) time to be updated for Kn arms. Therefore, the time
complexity for LCE-IX is O(K2

n). Regarding the space com-
plexity, we need to maintain Kn meta-distributions for the
LCE algorithm, and each meta-distribution requires O(Kn)
space for Kn arms, so the space complexity is O(K2

n).

6 NUMERICAL EXPERIMENTS

In this section, we compare LCE-IX with LCE (i.e., γt =
0) to show the effectiveness of the IX technique. We also



compare with a recent algorithm with the full-information
feedback called BM-Opt-Hedge [Chen and Peng, 2020].
The results are the average of 100 independent experiments.

We study a wireless medium access game between two
wireless devices (i.e., two agents), where the two wireless
devices are hidden from each other (i.e., each device can-
not observe each other), and trying to access one unknown
channel in each round. Each device has two options in each
round, wait for the next round (W) or access in the current
round (A). If a device chooses action W, it will receive a
reward of 0.

If a device chooses to access (A), the device has an energy
cost of 0.2. When only one device successfully accesses
the medium, then this device will receive a reward of 0.8.
If both devices choose action A, then there is a collision
and the rewards for both devices are −0.2 due to the wasted
transmission energy. The reward matrix (unknown to the
agents) is shown in Table 2.

We assume that all the devices do not adopt the RTS/CTS
mechanism, an oft-used technique to solve the hidden ter-
minal problem, as it will introduce new problems among
its control messages Sobrinho et al. [2005] and the game
model still applies to the RTS/CTS message itself. Thus, it
is quite challenging to improve the received rewards (i.e.,
the successful access to the channel) for both devices in a
distributed way, as both wireless devices are hidden termi-
nals to each other so that they cannot observe the actions
and rewards of each other and they do not know the total
number of devices.

Table 2: The reward matrix for the medium access game

W A
W (0, 0) (0, 0.8)
A (0.8, 0) (−0.2,−0.2)

As the swap regret is a generic performance measure, differ-
ent swap functions can lead to different regret definitions. In
this experiment, we show two metrics that reflect two differ-
ent regret definitions. The first metric is the time-averaged re-
ward, the gap of which from the optimal actions in hindsight
reflects the external regret of an online learning algorithm.
The other metric is the convergence to the ϵ-correlated equi-
librium. Whether or not an ϵ-correlated equilibrium can be
reached reflects whether an online learning algorithm can
minimize its internal regret.

6.1 TIME-AVERAGED REWARD

To save space, we only show the time-averaged reward for
all the considered algorithms, as it contains the equivalent
information about the cumulative regrets or rewards. For ex-
ample, if an algorithm has higher time-averaged rewards (or
closer to the maximum rewards), then it also has higher

cumulative rewards (or lower cumulative regrets).

To compare with a benchmark, we consider an adaptive
access technique (denoted by Ada) with the prior knowl-
edge about the number of all the hidden devices, which
randomly accesses a channel with an initial probability 1

2
for two devices. If a device fails, the access probability of
that device is reduced by half; otherwise, the device uses
the initial probability in the next round. Ada in our experi-
ments can achieve better performance than the distributed
coordination function of IEEE 802.11 used by current WiFi
devices in real-world scenarios, as Ada in our experiments
can set an appropriate initial probability to achieve high
throughput. Therefore, Ada can be a good benchmark with
partial prior knowledge to show the effectiveness of the
swap-regret-minimizing algorithms.

In addition, the maximum time-averaged reward (denoted
by Opt) of 0.4 can be achieved, by a mediator (e.g., wireless
access point) with full prior knowledge which either asks
Agent 1 to play W and Agent 2 to play A, or asks Agent 1 to
play A and Agent 2 to play W in each round. We show that
LCE-IX can approach Opt quickly in a distributed fashion
over time.

The time-averaged rewards of both agents in 1×104 rounds
are shown in Fig. 2. As we can see, LCE-IX outperforms
both LCE and Ada( 12 ) in terms of the faster convergence to
Opt. This shows the effectiveness of the γt-biased estimator
in smoothing the reward estimation so that the low-reward
arm can still be explored occasionally. We can also see that
BM-Opt-Hedge achieves the fastest result, but we note that
BM-Opt-Hedge is with the full-information feedback.

6.2 CONVERGENCE TO THE ϵ-CORRELATED
EQUILIBRIUM

The convergence of empirical distribution of joint actions
played by the two agents in T rounds is shown in Fig. 3b,
where (W,W) means both agents play action W, (W,A)
means Agent 1 plays W and Agent 2 plays A and so
on. We take the result of LCE-IX to explain the conver-
gence to the correlated equilibrium. The final results in
Fig. 3a are P̂T (W,W ) = 0.0088, P̂T (W,A) = 0.4501,
P̂T (A,W ) = 0.4501, and P̂T (A,A) = 0.091. We can do
a simple calculation to verify this empirical distribution is a
correlated equilibrium (ϵ = 0). For example, the expected in-
centives for Agent 1 to switch from W to A are P̂T (W,W ) ·
u1(A,W )+P̂T (W,A)·u1(A,A)−(P̂(W,W )·u1(W,W )+

P̂T (W,A) · u1(W,A)) = −0.08298 < 0, showing that
Agent 1 does not have incentives to switch from W to A
when both agents follow the joint distribution P̂T . In the
same way, we can verify the empirical joint distribution P̂T

is a correlated equilibrium for both agents.

Fig. 3b shows that LCE-IX has a faster convergence than
LCE to a correlated equilibrium, as the empirical proba-
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Figure 2: The time-averaged reward for both agents.

bilities of the optimal action pairs of (A,W ) and (W,A)
increase faster than that of LCE. This again shows the effec-
tiveness of the γ-biased estimator in controlling the variation
of the reward estimation.

On the other hand, with full-information feedback, BM-Opt-
Hedge can achieve a faster convergence rate than LCE and
LCE-IX. It will be our future interest to study whether the
techniques of BM-Opt-Hedge can be applied to the bandit-
feedback model to speed up the convergence rate.

7 CONCLUSION

In this paper, with regard to the randomness of all agents’
actions, we provided a high-probability bound for the instan-
taneous swap regret, which can further bound the expected
swap regret. Furthermore, we conducted numerical experi-
ments to verify the performance of LCE-IX.

Regarding future work, we will study the swap regret bounds
for mirror descent algorithms, and aim to close the gap
between the upper bound and the lower bound for swap
regret.
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Figure 3: The empirical distribution of joint actions by two
agents in T rounds.
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We start by introducing the notations that will be used in the proofs of Lemma 5.1 and Theorem 5.3. As the proofs are for
each individual agent n, without confusion, we drop the subscript n in some notations for brevity.

Recall that Gt the σ-algebra generated by the history information of all agents till round t, i.e., Gt :=
σ
(
{a1n, r1n, . . . , atn, rtn}n∈N

)
and let Et[·] := E[·|Gt] be the expectation conditioned on the history information by the end

of round t. Recall that yta := 1− ut
n(a;At

−n) is the instantaneous loss function if agent n plays arm a ∈ An in round t, and

thus Y t
a,a′ :=

1[at
n=a′]pt

aq
t
a,a′y

t
a′

pt
a′

and Ŷ t
a,a′ =

Y t
a,a′

qt
a,a′+γt

. Denote by L̂t
a :=

T∑
t=1

∑
a′∈An

qta,a′ Ŷ t
a,a′ and LT

a :=
T∑

t=1

∑
a′∈An

Y t
a,a′ .

A PROOF OF LEMMA 5.1

Proof. We can decompose
T∑

t=1

∑
a∈An

∑
a′∈An

βt
a,a′

(
Ŷ t
a,a′ − Ỹ t

a,a′

)
as follows:

T∑
t=1

∑
a∈An

∑
a′∈An

βt
a,a′

(
Ŷ t
a,a′ − Ỹ t

a,a′

)
=

T∑
t=1

∑
a∈An

∑
a′∈An

βt
a,a′

(
Ŷ t
a,a′ − ptay

t
a′

)
+

T∑
t=1

∑
a∈An

∑
a′∈An

βt
a,a′

(
ptay

t
a′ − Ỹ t

a,a′

)
.

(11)
We first bound the first term in (11) by proving that the process {Zt}t≥0, where Zt :=

exp

{
t∑

s=1

∑
a∈An

∑
a′∈An

βs
a,a′

(
Ŷ s
a,a′ − psay

s
a′

)}
for t > 0 and Z0 = 1, is a supermartingale with respect to filtra-

tion {Gt}t≥0 for all a ∈ An, i.e., E [Zt|Gt−1] ≤ Zt−1. Denote by At
−n the actions of all agents except agent n in round t.

Then, we have that

Et−1

[
exp

{∑
a∈An

∑
a′∈An

βt
a,a′

(
Ŷ t
a,a′ − ptay

t
a′

)}]
= Et−1


exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ Ŷ t

a,a′

}

exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ptay

t
a′

}


= Et−1

Et−1


exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ Ŷ t

a,a′

}

exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ptay

t
a′

} | At
−n


 = Et−1


Et−1

[
exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ Ŷ t

a,a′

}
| At

−n

]

exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ptay

t
a′

}
 ,

(12)
where the third equality is due to the law of total expectation, and the last inequality is due to that yta′ is determined given
At

−n and βt
a,a′ is Gt−1-measurable.

Denote by En,t−1[·] := Et−1

[
· | At

−n

]
. Then, we show that En,t−1

[
exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ Ŷ t

a,a′

}]
≤

exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ptay

t
a′

}
as follows:

En,t−1

[
exp

{∑
a∈An

∑
a′∈An

βt
a,a′ Ŷ t

a,a′

}]
= En,t−1

[
exp

{∑
a∈An

∑
a′∈An

βt
a,a′

pta1[a
t
n = a′]qta,a′yta′

pta′(qta,a′ + γt)

}]

≤ En,t−1

[ ∑
a∈An

∑
a′∈An

ptaq
t
a,a′

pta′
exp

{
βt
a,a′

1[atn = a′]yta′

qta,a′ + γt

}]
≤ En,t−1

[ ∑
a∈An

∑
a′∈An

ptaq
t
a,a′

pta′
exp

{
βt
a,a′

2γt

2γt1[a
t
n = a′]yta′

qta,a′ + γt1[atn = a′]yta′

}]

= En,t−1

[ ∑
a∈An

∑
a′∈An

ptaq
t
a,a′

pta′
exp

{
βt
a,a′

2γt

2γt1[a
t
n = a′]yta′

qta,a′ + γt1[atn = a′]yta′

}]
= En,t−1

[ ∑
a∈An

∑
a′∈An

ptaq
t
a,a′

pta′
exp

{
βt
a,a′

2γt

2γt1[a
t
n = a′]yta′/qta,a′

1 + γt1[atn = a′]yta′/qta,a′

}]

≤ En,t−1

[ ∑
a∈An

∑
a′∈An

ptaq
t
a,a′

pta′
exp

{
log(1 + βt

a,a′1[atn = a′]yta′/qta,a′)
}]

= En,t−1

[ ∑
a∈An

∑
a′∈An

ptaq
t
a,a′

pta′
(1 + βt

a,a′1[atn = a′]yta′/qta,a′)

]
.



where the first inequality is due to Jensen’s inequality, the second inequality is due to that 0 ≤ 1[atn = a′]qta,a′yta′ ≤ 1,
the third inequality is due to the fact that z

1+z/2 ≤ log(1 + z) for all z > 0, and the last inequality is due to the inequality
x log(1 + y) ≤ log(1 + xy) for all y > −1 and x ∈ [0, 1]. The last term in above equation can be further processed as
follows:

En,t−1

[ ∑
a∈An

∑
a′∈An

ptaq
t
a,a′

pta′
(1 + βt

a,a′1[atn = a′]yta′/qta,a′)

]
= En,t−1

[
1 +

∑
a∈An

∑
a′∈An

ptaq
t
a,a′

pta′
βt
a,a′1[atn = a′]yta′/qta,a′)

]

= En,t−1

[
1 +

∑
a∈An

∑
a′∈An

pta
pta′

βt
a,a′1[atn = a′]yta′)

]
= 1 +

∑
a∈An

∑
a′∈An

ptaβ
t
a,a′yta′ ≤ exp

{∑
a∈An

∑
a′∈An

βt
a,a′ptay

t
a′

}
,

where the inequality is due to 1 + x ≤ exp{x} for any x ∈ R. Therefore, we have shown that

En,t−1

[
exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ Ŷ t

a,a′

}]
≤ exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ptay

t
a′

}
, which indicates that (12) is bounded by 1.

Thus,

Et−1 [Zt] = Et−1

[
exp

{∑
a∈An

∑
a′∈An

βt
a,a′

(
Ŷ t
a,a′ − ptay

t
a′

)}]
· Zt−1 ≤ Zt−1,

which shows that {Zt}t≥0 is a supermartingale with respect to filtration {Gt}t≥0. Thus, we have E [ZT ] ≤ E [ZT−1] ≤
. . . ≤ E [Z0] = 1. By the Markov inequality, we have

Pr

(
T∑

t=1

βt
a,a′

∑
a∈An

∑
a′∈An

(
Ŷ t
a,a′ − Ỹ t

a,a′

)
≥ ϵ

)
≤ E

[
exp

{
T∑

t=1

βt
a,a′

∑
a∈An

∑
a′∈An

(
Ŷ t
a,a′ − Ỹ t

a,a′

)}]
· exp{−ϵ}

≤ exp{−ϵ}.

Next, we bound the second item in (11) in a similar way by proving {St}t≥0 is a supermartingale sequence, where

St := exp

{
t∑

s=1

∑
a∈An

∑
a′∈An

βs
a,a′

(
psay

s
a′ − Ỹ s

a,a′

)}
and S0 = 1. Recall that Ỹ t

a,a′ := 1[atn = a]yta′ . Thus, we have that

Et−1

[
exp

{∑
a∈An

∑
a′∈An

βt
a,a′

(
ptay

t
a′ − Ỹ t

a,a′

)}]
= Et−1


exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ptay

t
a′

}

exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ Ỹ t

a,a′

}
 = Et−1

En,t−1


exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ptay

t
a′

}

exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ Ỹ t

a,a′

}



= Et−1

En,t−1


exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ptay

t
a′

}

exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′1[atn = a]yta,a′

}

 = Et−1


exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ptay

t
a′

}

En,t−1

[
exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′1[atn = a]yta,a′

}]


≤ Et−1

En,t−1


exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ptay

t
a′

}

exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′1[atn = a]yta,a′

}

 = Et−1


exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ptay

t
a′

}

exp

{ ∑
a∈An

∑
a′∈An

βt
a,a′ptay

t
a,a′

}
 = 1,

where the inequality is due to Jensen’s inequality. Thus, we have E[ST ] ≤ E[ST−1] ≤ . . . ≤ E[S0] = 1. By the Markov
inequality, we have that

Pr

(
T∑

t=1

βt
a,a′

∑
a∈An

∑
a′∈An

(
ptay

t
a′ − Ỹ t

a,a′

)
≥ ϵ

)
≤ exp{−ϵ}.

Then, by the union bound, we have that

Pr

(∑T
t=1

∑
a∈An

∑
a′∈An

βt
a,a′

(
Ŷ t
a,a′ − Ỹ t

a,a′

)
≥ 2ϵ

)
≤ Pr

(
T∑

t=1
βt
a,a′

∑
a∈An

∑
a′∈An

(
Ŷ t
a,a′ − Ỹ t

a,a′

)
≥ ϵ

)
+ Pr

(
T∑

t=1
βt
a,a′

∑
a∈An

∑
a′∈An

(
ptay

t
a′ − Ỹ t

a,a′

)
≥ ϵ

)
≤ 2 exp{−ϵ},

and the lemma follows by solving 2 exp{−ϵ} = δ for ϵ.



B PROOF OF THEOREM 5.3

Proof. By the relationship between P t
n and Qt

a, we have the following equation held:

∑
a∈An

LT
a =

∑
a∈An

T∑
t=1

∑
a′∈An

Y t
a,a′ =

T∑
t=1

∑
a′∈An

∑
a∈An

1[atn = a′]ptaq
t
a,a′

pta′
yta′

=

T∑
t=1

∑
a′∈An

1[atn = a′]yta′ =

T∑
t=1

∑
a∈An

1[atn = a]yta,

(13)

The regret defined in (3) can be rewritten in the loss form and can be decomposed as follows:

Rswa
n (T,F) = max

F∈F

T∑
t=1

∑
a∈An

1[atn = a]yta −
T∑

t=1

∑
a∈An

1[atn = a]ytF (a)

= max
F∈F

∑
a∈An

LT
a −

∑
a∈An

L̃T
a,F (a) =

∑
a∈An

(LT
a − L̂T

a )︸ ︷︷ ︸
=:(a)

+
∑
a∈An

(L̂T
a − L̂T

a,F (a))︸ ︷︷ ︸
=:(b)

+
∑
a∈An

(L̂T
a,F (a) − L̃T

a,F (a))︸ ︷︷ ︸
=:(c)

,
(14)

where the second equality is due to (13) and the definition of L̃T
a,F (a) :=

T∑
t=1

1[atn = a]ytF (a).

We first show how to bound (a). By definition of LT
a and L̂T

a , we have that

LT
a − L̂T

a =

T∑
t=1

∑
a′∈An

Y t
a,a′ −

T∑
t=1

∑
a′∈An

qta,a′ Ŷ t
a,a′ =

T∑
t=1

∑
a′∈An

Y t
a,a′

(
1−

qta,a′

qta,a′ + γt

)
=

T∑
t=1

γt
∑

a′∈An

Ŷ t
a,a′ .

Thus, (a) is bounded by
T∑

t=1
γt
∑

a∈An

∑
a′∈An

Ŷ t
a,a′ .

Then, we show how to bound (b). Let W t
n :=

∏
a∈An

∑
a′∈An

exp (−ηt+1L̂
t
a,a′), and we have that W 0

n =
∏

a∈An

∑
a′∈An

exp (0) =

(Kn)
Kn . Note that WT

n = W 0
n

W 1
n

W 0
n
. . .

WT
n

WT−1
n

= (Kn)
Kn

T∏
t=1

W t
n

W t−1
n

. Then we have

exp (−
∑
a∈An

ηT+1L̂
T
a,F (a)) =

∏
a∈An

exp (−ηT+1L̂
T
a,F (a)) ≤

∏
a∈An

∑
a′∈An

exp (−ηT+1L̂
T
a,a′) = (Kn)

Kn

T∏
t=1

W t
n

W t−1
n

,

(15)



where the inequality is due to that exp (−ηT L̂
T
w,w′) ≥ 0. Then, by the definition of qtw,w′ in (5), we obtain that

W t
n

W t−1
n

=

∏
a∈An

∑
a′∈An

exp (−ηtL̂
t−1
a,a′) exp (−ηtŶ

t
a,a′)∏

a∈An

∑
a′∈An

exp (−ηtL̂
t−1
a,a′)

=
∏

a∈An

∑
a′∈An

exp (−ηtL̂
t−1
a,a′)∑

a′∈An

exp (−ηtL̂
t−1
a,a′)

exp (−ηtŶ
t
a,a′)

=
∏

a∈An

∑
a′∈An

qta,a′ exp (−ηtŶ
t
a,a′) ≤

∏
a∈An

∑
a′∈An

qta,a′ exp (−ηT Ŷ
t
a,a′)

≤
∏

a∈An

( ∑
a′∈An

qta,a′ − ηT
∑

a′∈An

qta,a′ Ŷ t
a,a′ +

η2T
2

∑
a′∈An

qta,a′(Ŷ t
a,a′)

2

)

≤
∏

a∈An

exp

(
−ηT

∑
a′∈An

qta,a′ Ŷ t
a,a′ +

η2T
2

∑
a′∈An

qta,a′(Ŷ t
a,a′)

2

)

= exp

(
−ηT

∑
a∈An

∑
a′∈An

qta,a′ Ŷ t
a,a′ +

η2T
2

∑
a∈An

∑
a′∈An

qta,a′(Ŷ t
a,a′)

2

)
,

(16)

where the first inequality is due to that ηt is a non-increasing parameter, the second inequality is due to that exp (x) ≤
1 + x+ x2

2 for any x ≤ 0, and the third inequality is due to that 1 + x ≤ exp (x) for any x ∈ R. Combining (16) and (15),
and taking the logarithm for both sides of the above inequality, we have that

−
∑
a∈An

ηT L̂
T
a,F (a) ≤ Kn log (Kn)−

∑
a∈An

ηT

T∑
t=1

∑
a′∈An

qta,a′ Ŷ t
a,a′︸ ︷︷ ︸

=:L̂T
a (by definition of L̂T

a )

+
η2T
2

T∑
t=1

∑
a∈An

∑
a′∈An

qta,a′

(
Ŷ t
a,a′

)2
.

Dividing both sides by ηT > 0, with rearrangement, we have

∑
a∈An

L̂T
a −

∑
a∈An

L̂T
a,F (a) ≤

Kn log(Kn)

ηT
+

ηT
2

T∑
t=1

∑
a∈An

∑
a′∈An

qta,a′

(
Ŷ t
a,a′

)2
≤ Kn log(Kn)

ηT
+

T∑
t=1

ηt
2

∑
a∈An

∑
a′∈An

Ŷ t
a,a′ ,

(17)

where the second inequality is due to that ηt is a non-increasing parameter and the fact that qta,a′ Ŷ t
a,a′ ≤ 1. Combining with

the bound of (a), we have

∑
a∈An

(
LT
a − L̃T

a,F (a)

)
≤ Kn log(Kn)

ηT
+

T∑
t=1

(ηt
2

+ γt

) ∑
a∈An

∑
a′∈An

Ŷ t
a,a′ +

∑
a∈An

(
L̂T
a,F (a) − L̃a,F (a)

)
.

Let γt = ηt/2. By invoking Lemma 5.2, with probability at least 1− δ, we have the following inequality held:

∑
a∈An

(
Lt
a − L̃T

a,a′

)
≤ Kn log(Kn)

ηT
+

T∑
t=1

ηt

(∑
a∈An

∑
a′∈An

Ỹ t
a,a′

)
+ 2 log(

2

δ
) +

1

ηT
log(

2KKn
n

δ
)

≤ Kn log(Kn) +Kn log(2Kn/δ)

ηT
+

T∑
t=1

ηtKn + 2 log(
2

δ
),

where the last inequality is due to that
∑

a∈An

∑
a′∈An

Ỹ t
a,a′ =

∑
a∈An

∑
a′∈An

1[atn = a]yta′ ≤ Kn and log(
2KKn

n

δ ) ≤

Kn log(2Kn/δ) for δ ∈ (0, 1).



Letting ηt =
√

log(Kn)
t , we have

RT
n (T,F) ≤ 2Kn

√
T log(Kn) +Kn

√
log(Kn)

T∑
t=1

√
1

t
+

(
2 +Kn

√
T

logKn

)
log(

2

δ
).

When ηt =
√

log(Kn)+log(2Kn/δ)
t , the above inequality becomes

RT
n (T,F) ≤ Kn

√
T (log(Kn) + log(2Kn/δ)) +Kn

√
(log(Kn) + log(2Kn/δ)

T∑
t=1

1

t
+ 2 log(

2

δ
).

Theorem 5.3 follows by
T∑

t=1

√
1
t ≤ 2

√
T .
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