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Swap Regret and Our Contributions

= We study a multi-agent bandit problem in an unknown general-sum game repeated for a
number of rounds (i.e., learning in a black-box game with bandit feedback), where a set of
agents have no information about the underlying game structure and cannot observe each
other's actions and rewards.

= We are the first to give a near-optimal high-probability swap-regret upper bound based on
a refined martingale analysis for the exponential-weighting-based algorithms with the
implicit exploration technique, which can further bound the expected swap regret instead
of the pseudo-regret studied in the literature.

= |t is also guaranteed that correlated equilibria can be achieved in a polynomial number of
rounds If the algorithm is played by all agents.
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Figure 1: An example of MAB-UG with two agents and two arms for each agent.

We study the unknown general-sum games (i.e., black-box games) with bandit feedback repeated
for T rounds, involving an agent set N := {1, ..., N} and each agent n € N is associated with a
finite set of arms (i.e., actions) A,, with size K,,. The arm set for each agent is not required to be
identical. At each timet=1,...,T:

= Fach agent n plays an action a% c A,

= Each agent n observes a reward uy(al; Al ), where

= u, - A — [0, 1], mapping the actions of all agents to agent n's rewards
= (a'; A" )is an abbreviation of A" := (a},...,d, ..., al) with a highlight of agent n's action a,, against other
agents' actions.

= The objective of each agent is to (1) accumulate as many rewards as possible and (2) achieve
the e-correlated equilibrium.

Challenges:

= Fach agent does not know the underlying game structure nor the number of other agents.
= Each agent cannot observe the actions and rewards of other agents.

Applications:

= End-to-end congestion control in computer networks.
= Medium access control in wireless communications.

Introduced by [1], swap regret is a general regret definition comparing the learning algorithm with
K,,é(” competitors:

T
RYM(T.F) = max 37~ 1lahy = a] (un(Fla):AL,) — un(a; AL,)) (1)
t=1 acA,

where F,, : A, — A, takes a € A,, as input and outputs o/ € A,, and F is a finite set of
Fy,. Minimizing swap regret can accumulate many rewards as possible and converge to the e-
correlated equilibrium.

Table 1: Swap-regret bounds for exponential-weighting-based algorithms with bandit feedback
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The LCE-IX Algorithm

The LCE-IX Algorithm is based on the swap-regret-minimizing framework [1], calling the Exp3-IX
algorithm [5] as subroutines. LCE-IX maintains K, subroutines, and each K, subroutine maintains
a probability distribution @, = {QQ,a/ - Va' € A,} among K, actions. Let P! = {ﬂi) .. 7p7}(n}
be the probability distribution of selecting an action a,, € A,,, which is calculated by solving the

following equations for P!
Pl = pP'Qt. (2)

The observed rewards are then distributed to subroutines according to their Q% by Y;a, =

1ap,=d'lphd’ . . o . . 5 v
. 20 (1—X!), and estimated with the implicit exploration technique [5] by ch = ﬁ.
a’ ’ a,a’ ¢
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Then, Q! is updated by following the Exp3 algorithm: ¢
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Table 2: The reward matrix for the medium access game
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Figure 2: The time-averaged reward for both agents.
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Figure 3: The empirical distribution of joint actions by two agents in T rounds.
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