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Abstract

We study a multi-agent bandit problem in an unknown general-sum game repeated for a

number of rounds (i.e., learning in a black-box game with bandit feedback), where a set of

agents have no information about the underlying game structure and cannot observe each

other's actions and rewards.

We are the first to give a near-optimal high-probability swap-regret upper bound based on

a refined martingale analysis for the exponential-weighting-based algorithms with the

implicit exploration technique, which can further bound the expected swap regret instead

of the pseudo-regret studied in the literature.

It is also guaranteed that correlated equilibria can be achieved in a polynomial number of

rounds if the algorithm is played by all agents.

Introduction

Arm a

Agent 1

Arm b

Arm c
Agent 2

Arm d

0.8

0.2

?

?

?

?

?

?

Figure 1: An example of MAB-UG with two agents and two arms for each agent.

We study the unknown general-sum games (i.e., black-box games) with bandit feedback repeated

for T rounds, involving an agent set N := {1, . . . , N} and each agent n ∈ N is associated with a

finite set of arms (i.e., actions) An with size Kn. The arm set for each agent is not required to be

identical. At each time t = 1, . . . , T :

Each agent n plays an action at
n ∈ An

Each agent n observes a reward un(at
n;At

−n), where
un : A → [0, 1], mapping the actions of all agents to agent n's rewards
(at

n;At
−n) is an abbreviation of At := (at

1, . . . , at
n, . . . , at

N) with a highlight of agent n's action an against other

agents' actions.

The objective of each agent is to (1) accumulate as many rewards as possible and (2) achieve

the ε-correlated equilibrium.

Challenges:

Each agent does not know the underlying game structure nor the number of other agents.

Each agent cannot observe the actions and rewards of other agents.

Applications:

End-to-end congestion control in computer networks.

Medium access control in wireless communications.

Swap Regret and Our Contributions

Introduced by [1], swap regret is a general regret definition comparing the learning algorithmwith

KKn
n competitors:

Rswa
n (T, F) = max

F∈F

T∑
t=1

∑
a∈An

1[at
n = a]

(
un(F (a);At

−n) − un(a;At
−n)

)
, (1)

where Fn : An → An takes a ∈ An as input and outputs a′ ∈ An, and F is a finite set of

Fn. Minimizing swap regret can accumulate many rewards as possible and converge to the ε-
correlated equilibrium.

Table 1: Swap-regret bounds for exponential-weighting-based algorithms with bandit feedback

Upper bound, Computational cost, Regret notion Lower bound

O
(√

TK3
n log(Kn)

)
, poly-time, pseudo-regret [1] Ω

(√
TKn

)
[1]

O
(√

TK2
n log(Kn)

)
, exp-time, pseudo-regret [2]

O
(√

TK2
n log(Kn)

)
, poly-time, pseudo-regret [3] Ω

(√
TKn log(Kn)

)
[3]

O
(√

TK2
n log(Kn/δ)

)
, poly-time, conditionally expected regret [4]

O
(√

TK2
n log(Kn/δ)

)
, poly-time, instantaneous regret (our work, Theorem 5.3)

O
(√

TK2
n log(Kn)

)
, poly-time, expected regret (our work, Corollary 5.4)

The LCE-IX Algorithm

The LCE-IX Algorithm is based on the swap-regret-minimizing framework [1], calling the Exp3-IX

algorithm [5] as subroutines. LCE-IXmaintainsKn subroutines, and eachKn subroutinemaintains

a probability distribution Qt
a := {qt

a,a′ : ∀a′ ∈ An} among Kn actions. Let P t
n :=

[
pt

1, · · · , pt
Kn

]
be the probability distribution of selecting an action an ∈ An, which is calculated by solving the

following equations for P t
n

P t
n = P t

nQt
n. (2)

The observed rewards are then distributed to subroutines according to their Qt
a by Y t

a,a′ :=
1[at

n=a′]pt
aqt

a,a′
pt

a′
(1−Xt

n), and estimated with the implicit exploration technique [5] by Ŷ t
a,a′ :=

Y t
a,a′

qt
a,a′+γt

.

Then, Qt
a is updated by following the Exp3 algorithm: qt+1

a,a′ =
exp (−ηt+1L̂t

a,a′)∑
a′′∈An

exp (−ηt+1L̂t
a,a′′)

.

Analytical Results

Theorem 5.3: Let δ ∈ (0, 1). With probability at least 1 − δ, ηt =
√

log(Kn)+log(Kn/δ)
t and γt = ηt/2,

the instantaneous swap regret over T rounds is bounded by O
(√

TK2
n log(Kn/δ)

)
.

Theorem 5.4: With ηt =
√

log(Kn)
t and γt = ηt/2, the expected swap regret is bounded by

O
(√

TK2
n log(Kn)

)
.

Theorem 5.5: If every agent n ∈ N plays the LCE-IX algorithm for T rounds, then the empirical
distribution of the joint actions played by all agents P̂T is an ε-correlated equilibrium with prob-

ability at least 1 − δ, where ε = O(max
n∈N

Kn

√
log(KnN/δ)

T ). When T → ∞, P̂T converges to the set

of correlated equilibria almost surely.

Numerical Experiments

Table 2: The reward matrix for the medium access game

W A

W (0, 0) (0, 0.8)
A (0.8, 0) (−0.2, −0.2)
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Figure 2: The time-averaged reward for both agents.

0 2 4 6 8 10

t 10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

E
m

p
ir
ic

a
l 
P

ro
b
a
b
ili

ty

(W,W) (W,A) (A,W) (A,A)

(a) LCE

0 2 4 6 8 10

t 10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

E
m

p
ir
ic

a
l 
P

ro
b
a
b
ili

ty

(W,W) (W,A) (A,W) (A,A)

(b) LCE-IX

Figure 3: The empirical distribution of joint actions by two agents in T rounds.
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