
End-to-end Congestion Control as Learning for
Unknown Games with Bandit Feedback

Zhiming Huang
Department of Computer Science

University of Victoria, Canada
Email: zhiminghuang@uvic.ca

Kaiyang Liu∗
Department of Computer Science

Memorial University of Newfoundland, Canada
Email: liukaiyang@uvic.ca

Jianping Pan
Department of Computer Science

University of Victoria, Canada
Email: pan@uvic.ca

Abstract—In this paper, we study the open problems raised
by Karp et al. in FOCS 2000, where the authors formulated
the end-to-end congestion control as a repeated game between a
flow and an adversary. They mentioned several open problems
including finding equilibria in a more realistic game model for the
situation where the available bandwidth is a result of competition
among multiple flows instead of being chosen by an adversary,
and designing the randomized algorithm to deal with the dynamic
change of network bandwidth. Although there have been many
game-theoretic works for congestion control, to the best of our
knowledge, the above two problems still remain unsolved over
the past decades. We take a step further to address the above
two problems by first modeling the end-to-end congestion control
as a repeated unknown general-sum game among multiple flows
with bandit feedback. Each flow is a player in this unknown
game, making decisions on how many packets to send. The
throughput for each flow depends on all the flows’ rates and
the network capacity. The unknown setting and bandit feedback
capture the essence of end-to-end congestion control: each flow
has no information about others (e.g., the number, actions, and
packet loss of other flows), and only receives limited information
for its chosen action. Then, we propose a randomized no-regret
learning algorithm for each flow called LUC based on a swap-
regret-minimizing technique. We prove that LUC can guarantee
a polynomial-time convergence rate to correlated equilibria in
the multi-player setting. Finally, we have implemented LUC
through the Linux kernel, and conducted extensive fairness-
related experiments in Mininet and trace-driven experiments
with Pantheon to show that each flow with LUC can fairly share
the bandwidth in homogeneous scenarios, and be competitive but
TCP-friendly in heterogeneous scenarios.

I. INTRODUCTION

The study of congestion control in computer networks
has kept prosperous due to its intrinsic complexity in the
distributed control of flows with limited information. The
modern Internet design philosophy of end-to-end delivery
results in the decision making at the end-host, forming a
strategic environment for resource competition in networks.
Studying such a strategic environment is the core of the
algorithmic game theory, and thus it plays an important role
in understanding the nature of the network congestion and an-
alyzing the performance of congestion control algorithms [1].

Although many game-theoretic works have been done for
congestion control, most of them are focused on analyzing
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the existing TCP congestion control algorithms or router
policies (e.g., drop-tail) [2]–[12]. Those works usually assume
game models with all information available, e.g., the number
of flows, the strategies, and the router policies are known a
priori. Such game models work well when designing router
policies, as a router has information about incoming flows.
However, when it comes to the design of end-to-end conges-
tion control algorithms, such game models fail to capture the
reality where each flow has limited information about others
and can only observe the outcome for its chosen congestion
window (cwnd) or sending rate (srate).

The very first game model for designing end-to-end con-
gestion control algorithms is proposed by Karp et al. [13]
in FOCS 2000 where the authors formulated the end-to-end
congestion control as a repeated game between a flow and
an adversary. In each round of the game, the flow sends a
cwnd of packets to the network, and the adversary chooses
available network bandwidth for the flow but the flow cannot
observe it. Then by the end of the round, the flow will
observe a utility determined by the number of sent packets
and the available network bandwidth. Such a model is simple
yet effective to capture the interaction between one flow
and the network. However, available bandwidth is simply
assumed to be dynamically chosen by an adversary, while
in reality, the dynamic of available bandwidth is a result of
competition among multiple flows. Thus, the author of [13]
proposed several open problems including finding equilibria
in a more realistic game model considering the competition
among multiple flows, and designing randomized algorithms
to deal with the dynamic available bandwidth.

Over the past decades, the above open problems still re-
main unsolved. Although there are many works in recent
years that adopt online learning techniques to design end-to-
end congestion control algorithms [14]–[19], they are either
explicitly or implicitly based on the simple model proposed
in [13]. The PCC-Vivace [20] algorithm, on the other hand,
implicitly formulates the end-to-end congestion control as a
concave game based on the theoretical results in [21]: when
minimizing the so-called external regret in concave games for
each player, all players will reach Nash equilibria. Albeit con-
cave games capture some game-theoretic essence of the end-
to-end congestion control, the assumption about the concave



utility function is quite strong. In addition, external regret is a
performance metric measuring the maximum performance loss
between an online learning algorithm and a set of competitors
always playing a fixed action, but even the best fixed action
may not be the optimal solution for the game. Thus, a more
realistic game model and learning algorithms are needed to
address the open problems.

We take a step further for the open problems by formulating
end-to-end congestion control as learning for repeated un-
known general-sum games with bandit feedback. In each round
of the unknown general-sum games, or equivalently, black-box
games [22], each flow needs to make decisions independently
in a distributed manner with limited information. The limited
information means that each flow may not know the number
of all the flows in the same network, and each flow cannot
observe the information (e.g., the congestion window and
packet loss) about other flows, or communicate with other
flows. The bandit feedback means that each flow can only
know its own utility (e.g., throughput) for its chosen cwnd or
srate. The objective of each flow is to accumulate as many
utilities as possible, and all the flows converge to equilibria.
Instead of Nash equilibria, we consider a generalization of
Nash equilibrium called the correlated equilibrium [23]. The
correlated equilibria usually require a central controller to give
recommendations to the agents involved in the game so that
the system can achieve maximum efficiency. However, in the
unknown games, we do not assume that each flow can obtain
any recommendations. Is there any strategy if played by all
the flows can achieve the correlated equilibria as if there were
a central controller?

This problem is very challenging as flows are affecting
each other, and each flow with such limited information needs
to trade off between exploring (i.e., probing) the reward for
each cwnd (or srate) and exploiting the current knowledge
learned from the exploration to make the best decisions.
Motivated by the swap regret [24], [25], a generic perfor-
mance measure for online learning algorithms, we develop
a randomized algorithm called Learning for Unknown games
for Congestion Control (LUC) for each flow in the unknown
games with bandit feedback. We show that LUC is a no-
swap-regret learning algorithm, i.e., the time-averaged swap
regret vanishes asymptotically over time. The advantages of
minimizing swap regret are twofold. First, a no-swap-regret
learning algorithm is robust to a larger set of competitors (see
more discussions in Sec. III). Second, minimizing swap regret
is a computationally-efficient way to find a correlated equi-
librium (see Corollary 1). LUC is designed to be a building
block that can be used to design end-to-end congestion con-
trol algorithms that address the unknown games and achieve
correlated equilibria efficiently.

To sum up, the contributions of our work are as follows:

• We are the first in the literature to formulate the end-
to-end congestion control as repeated unknown general-
sum games with bandit feedback, which take a step
further to address the open problems raised in [13] by

capturing more game-theoretic essence of the end-to-end
congestion control in reality.

• We proposed a polynomial-time randomized algorithm
called LUC to address the unknown games, which
has a cumulative swap regret upper bounded by
O(Cn

√
T log(Cnδ−1)) with probability at least 1−δ for

any δ ∈ (0, 1), where Cn is the number of actions for flow
n and T is the total length of the game. Furthermore, the
LUC algorithm can achieve an ϵ-correlated equilibrium
in a polynomial number of rounds.

• Third, we implement LUC through the Linux kernel 5.4.0
based on the congestion control plane [26], a new API for
writing congestion control algorithms. We first perform
TCP fairness-related experiments in Mininet to compare
with the TCP CUBIC and TCP BBR version 2. Then
we perform experiments driven by U.S. cellular network
traces with Pantheon [27] with an additional comparison
to PCC-Vivace [20]. The experiment results show that
LUC is TCP-friendly and competitive, and can adapt to
dynamic network environments.

The rest of the paper is organized as follows. Sec. II reviews
related works. The problem settings are described in Sec. III.
The LUC algorithm is proposed in Sec. IV, with analytical
results presented in Sec. V. We show the throughput and
fairness-related experiments in Sec. VI. Sec. VII concludes
the paper. The detailed proofs of the swap-regret upper bound
are deferred to Appendix.

II. RELATED WORKS

In this section, we first give a detailed review of the game-
theoretic congestion control, and then briefly discuss recent
progresses in learning-based congestion control. Furthermore,
we will review equilibrium learning in game theory.

Game-theoretic Congestion Control: Game theory has
been extensively studied in congestion control, and there are
mainly two lines of research for game-theoretic congestion
control. One is focused on router-based congestion control,
which manages the incoming packets from different flows for a
router, and the other studies the end-to-end congestion control,
which decides how many packets to be sent at a time for each
flow.

For router-based congestion control, the main goal is to
analyze the existing TCP congestion control algorithms with
given router policies (e.g., drop-tail) or design new router
policies. The earliest work can be traced back to [28], which
gave game-theoretic implications of switching disciplines and
their relevance to congestion control. It was later followed by
the works of [2]–[10], where the independent data flows are
considered as selfish players in a game, and the mechanism
of the game is determined by the router policies. In such
games, both the router policies and the end-to-end congestion
control algorithms (i.e., the strategies of players) are known
a priori. Although the above works can be effective to design
and analyze router policies, they cannot provide an end-to-end
congestion control solution for data flows.



The other line of research studies the design and analysis
of end-to-end congestion control algorithms from a game-
theoretic point of view. One of the earliest works is [13],
where the author modeled the congestion control problem as
a game between a flow and an adversary. In each round, a
flow selects an action (e.g., cwnd) and the adversary selects
a bandwidth for triggering penalties if congestion happens or
there is wasted bandwidth. By the end of that paper, they
raised several open questions including how to model a more
realistic case where the available bandwidth is a result of
the competition among flows instead of being chosen by the
adversary, and whether equilibria exist in such scenarios. Such
a multi-flow game problem is challenging, as each flow has
very limited information about other flows in the end-to-end
congestion control.

Later, in the work of [29], the author modeled the end-to-end
congestion control as a noncooperative game, and proved the
existence and uniqueness of Nash equilibrium with convexity
assumptions for utility functions. They also design gradient
algorithms to achieve the Nash equilibrium. However, the
gradient algorithm requires knowledge about the total number
of flows and the network capacity, which is not practical
in reality. To address this issue, the authors of [30] tried
to model the end-to-end congestion control as a Bayesian
game. Although each flow does not need to know the exact
information about other flows, a prior belief about others is
still required.

Some theoretical progress has been made in the work
of [20], where the authors designed PCC-Vivace based on
the theoretical work [21] for equilibrium learning in concave
games, i.e., the utility function for each flow is concave,
where the Nash equilibrium can be reached if each agent
plays an external-regret-minimizing algorithm. However, it is
not realistic to assume the utility for each flow must be a
concave function. On the other hand, unknown general-sum
games can well capture the game-theoretic nature of end-to-
end congestion control, as there are no unrealistic assumptions
for either the flows or the utility functions.

To the best of our knowledge, the open problem proposed
by [13] has still remained unsolved. We take a step further
by modeling the competition of multiple flows as a repeated
unknown general-sum game with bandit feedback for the first
time in literature and proposing a swap-regret-minimizing
algorithm to asymptotically achieve the correlated equilibria
that are more general than the well-known Nash equilibria.

Learning-based Congestion Control: Recent years have
witnessed a line of research work on congestion control based
on machine learning techniques. Remy [31] and Indigo [27]
are two representative works for offline-learning congestion
control algorithms. Such algorithms have limited adaptivity to
new situations in practice. Therefore, reinforcement learning
(RL) techniques have been introduced to congestion control
to alleviate such problems, such as QTCP [14], Aurora [15],
Eagle [16], Orca [17], MOCC [18] and Pareto [19]. However, a
certain amount of offline training is often needed for the above
RL models to guarantee an efficient and effective deployment.

Lightweight online learning techniques do not require a pre-
trained model. The typical example is PCC-Vivace [20], which
relies on online (convex) optimization to update the sending
rate. Although the above works share some similarities to the
equilibrium learning in our work, the common limitation of the
above learning-based algorithms is that they can only minimize
external regret, i.e., the maximum performance gap from the
set of competitors always playing a fixed action is bounded.
There are no theoretical guarantees for the convergence to
correlated equilibria.

Equilibrium Learning: The study of unknown game mod-
els (or the black-box games [22]) has a long history that can
be traced back to the fictitious play for the two-player zero-
sum games [32], [33]. However, it was not until the start
of this century that much progress has been made with the
development of online learning techniques [34], particularly
for games with specific structures. For example, the authors of
[35] studied the congestion game with bandit feedback, where
the author tried to minimize a Nash regret, which is a sum
of the maximal external regret among agents in each round.
A similar work of [36] studied a specific congestion game,
where each resource is equally shared among the agents who
choose it. Nevertheless, end-to-end congestion control is not
necessarily a congestion game, as one may not find a potential
function that is the essence of the congestion game. The
authors of [37] studied augmented games by utilizing com-
munications between agents. However, such a methodology
is not suitable for unknown games, as the agents in unknown
games do not know each other and will not communicate with
each other. There are many other equilibrium learning works
for some specific games, e.g., potential games [38]–[41], and
mean-field games [42]–[44]. As all their results require specific
game structures, they cannot be applied to unknown general-
sum games.

Regarding the learning for unknown general-sum games,
there are mainly two situations depending on the observability
of feedback. If the utility of an action can be observed
regardless of whether it is played or not, we call it the
full-information feedback [45]–[47], and if only the utility
of a played action can be observed, then it is the bandit
feedback. As in end-to-end congestion control, each flow can
only observe the feedback for its selected cwnd (or srate), we
will focus on learning for the bandit feedback.

The first work that addressed the unknown general-sum
game problem with bandit feedback is [48], where an
exponential-weight technique is proposed to minimize external
regret. However, it is shown in [34] that the external-regret-
minimizing algorithm can only converge to the set of Nash
equilibria for the two-person zero-sum game. It was later
proved in [21] that minimizing external regret can converge to
Nash equilibria for concave games. However, for end-to-end
congestion control, we cannot take for granted that the utility
function is concave. As we want to come up with a building
block that can be adapted to any congestion control algorithm,
we are more interested in unknown general-sum games, and
the correlated equilibrium can only be achieved if the internal



regret can be minimized asymptotically. Since minimizing
the swap regret can also minimize both the external and
internal regret [24] and be more robust against a larger set
of competitors, we are motivated to address the unknown
games for end-to-end congestion control from the swap-regret
viewpoint, which is different from the Nash regret that is
prevalent in the equilibrium-learning literature.

III. MODEL AND PROBLEM FORMULATION

A. Unknown General-sum Game Model with Bandit Feedback

We consider a network of N flows competing for the same
resource (e.g., bandwidth) in the network, as shown in Fig. 1.
The congestion happens when the number of packets sent by
all flows is beyond the network capacity, and the overflowed
packets will be dropped according to a router policy (e.g.,
drop-tail). The competitive interaction between multiple flows
can be modeled by a repeated unknown general-sum game
involving N flows with the following two justifications that
are also widely used in the related works [3], [10].

1

Flow

2

N

Router Internet

Fig. 1: A network model for the unknown general-sum games.

First, the length of each round of the repeated game is
chosen appropriately such that all the flows can finish one
round of interaction in one round of the game, i.e., send a
cwnd of packets and receive ACKs for these packets. Second,
we assume the packet loss is only caused by the congestion, as
the congestion control scheme in the current TCP also assumes
the packet loss is congestion-induced.

Therefore, we can formally define the repeated unknown
general-sum game with bandit feedback for end-to-end con-
gestion control as follows. Denote by N := {1, . . . , N}
the set of all flows in the game, and each flow n ∈ N is
associated with a (possibly different) finite set of actions (i.e.,
cwnd or srate) Wn := {Cmin, . . . , Cmax}, where Cmax is
the maximum cwnd (or srate) of flow n. Let Cn := |Wn|
be the total number of actions for flow n. In an actual
implementation, Cmin and Cmax can be either determined
by an initial probing phase, or determined by the network
physical-layer capabilities. The game is repeated for T rounds.
In each round t = 1, . . . , T , each flow selects a cwnd (or
srate) wt

n ∈ Wn. By the end of round t, each flow observes
feedback information (e.g., packet loss and round trip time)
and calculates utility ut

n ∈ [0, 1]. We only require that the
calculated utility should be normalized between 0 and 1, and
do not give any specific form of the utility function here
because we want our solution to be general enough for any
utility functions, so that the solution to the unknown games

can be acting as a building block for other congestion control
algorithms.

For any given network capacity and router policies, the util-
ity for each flow n is not only dependent on its own action wt

n

but also determined by the actions of all other flows. Denote
by Wt := {wt

n : ∀n ∈ N} the action profile in round t. To em-
phasize the dependency of the utility on all the flows, we fur-
ther write ut

n as un(Wt) or un(w
t
n,Wt

−n), where (wt
n;Wt

−n)
is an abbreviation of Wt := (wt

1, . . . , w
t
n, . . . , w

t
N ) with a

highlight of flow n’s action wt
n against other flows’ actions.

We do not directly model the flow importance (e.g., the QoS
requirements) in the game, as the importance of the flows is
taken into consideration by router policies. For example, one
can design a router policy that drops fewer packets for the
flows with a higher QoS requirement. As the focus of this
paper is the design of a solution for the unknown game with
any router policies, our solution still works even if the flows
are of different importance.

Note that each flow is in a bandit feedback setting, i.e.,
neither the actions nor the loss of other flows can be observed,
and each flow n can only observe the information such as
packet loss and round trip time to calculate its own utility
for the chosen cwnd (or srate). Also, neither the number of
flows nor the router policy is known a priori to each flow.
The reason for considering such a limited information setting
is to make the model more realistic so that our algorithm is
more deployable to the end systems without modifying the
intermediate nodes.

B. Problem Formulation

The goal of each flow in the unknown general-sum games
with bandit feedback is to accumulate as many utilities as
possible without getting the network congested. Network con-
gestion results in packet loss and queuing delay, which further
reduces the utilities for each flow. Such a goal can be easily
achieved if a router can act as a central controller to allocate
cwnd (or srate) for each flow by sending control messages.
For example, if all the N flows are of the same importance,
i.e., all the N flows have the same QoS requirements, then the
optimal srate for each flow is C/N , where C is the network
capacity. To accommodate more general situations where the
importance of flows can be different or time-varied, we use the
notion of ϵ-correlated equilibrium to measure the optimality
of a solution, as defined below.

Definition 1. Let P be a joint probability distribution over
W , where W :=

∏
n∈N

Wn is the space spanned by all

combinations of flows’ actions. We say P is an ϵ-correlated
equilibrium if the expected incentive for each flow n to deviate
from action w to another action w′ is no more than ϵ ≥ 0,
i.e., ∀n ∈ N , we have∑

(w;W−n)∈W

P(W) (un(w
′;W−n)− un(W)) ≤ ϵ. (1)

Intuitively, the router draws an action profile from P and
privately recommends the srate to each flow. For example, in



the case of flows with equal importance, P(wn = C
N ,∀n ∈

N ) = 1 and the probabilities for drawing other profiles are
equal to 0. As no flow will gain more than ϵ to choose a
different srate, provided that other flows follow the router’s
recommendation, such a P is an ϵ-correlated equilibrium.
Compared with other forms of equilibria, correlated equilib-
rium considers the joint instead of the marginal distribution of
the action space and does not assume independence among
different action sets. Thus, correlated equilibrium is more
general and useful.

However, the goal of each flow to accumulate maximum
utilities becomes more challenging when each flow in the
unknown games makes decisions independently. The problem
of learning for unknown general-sum games is stated as
follows: When the only information revealed to each flow is
the utility of its chosen cwnd (or srate) in each round, is there
any algorithm that can help each flow accumulate more utilities
and converge to the ϵ-correlated equilibrium as if there were
a central controller?

More specifically, the ability to accumulate more utilities is
measured by the external regret, which is defined to be the
maximum performance loss between a learning algorithm and
a set of competitors always playing a fixed action throughout
the game. Let 1[wt

n = w] be the indicator function that returns
1 if w is the chosen cwnd (or srate) in round t by flow n and
0 otherwise. The external regret Rext

n (T ) for flow n by the
end of round T is defined as

Rext
n (T ) := max

w′∈Wn

T∑
t=1

un(w
′;Wt

−n)−
T∑

t=1

∑
w∈Wn

1[wt
n = w]un(w;Wt

−n),

(2)
On the other hand, we need to make sure that if all flows

play the algorithm, the empirical distribution of the joint

actions, denote by P̂T (W) := 1
T

T∑
t=1

1 [Wt = W] ,W ∈ W , is

an ϵ-correlated equilibrium defined in (1), where Pt is the joint
distribution of actions in round t. Such an ability is measured
by the internal regret [34], [49], which compares the actions
of a flow in a pair-wise manner:

Rint
n (T ) := max

w,w′∈Wn

T∑
t=1

rt(w,w′),n, (3)

where

rt(w,w′),n := 1[wt
n = w]

(
un(w

′;Wt
−n)− un(w;Wt

−n)
)

is the instantaneous regret for flow n of having played arm
w instead of arm w′ in round t. In Theorem 2, we show
that if all flows play an internal-regret-minimizing algorithm
together, the empirical distribution of their joint actions is an
ϵ-correlated equilibrium.

To minimize both external regret and internal regret at the
same time, we introduce a more general notion of regret, called
the swap regret [24]. By defining a swap function Fn for each
agent n that maps one cwnd (or srate) w ∈ Wn to another
cwnd (or srate) w′ ∈ Wn and denoting by Fn a finite set

of Fn, the swap regret for flow n with Fn up to round T is
defined as follows:

Rswa
n (T,Fn) = max

F∈Fn

T∑
t=1

∑
w∈Wn

1[wt
n = w]un(F (w);Wt

−n)−
T∑

t=1

∑
w∈Wn

1[wt
n = w]un(w;Wt

−n).

(4)
We can boil down the swap regret to the external regret by
letting Fn := {Fw : ∀w ∈ Wn}, where Fw : Wn →
w. The internal regret can be obtained by letting Fn :=
{F(w,w′) : ∀w,w′ ∈ Wn}, where F(w,w′)(w) = w′ and
F(w,w′)(w

′′) = w′′ for any other w′′ ∈ Wn. Thus, a no-
swap-regret learning algorithm has a bounded performance gap
from (Cn)

Cn competitors because there can be up to (Cn)
Cn

possible mappings in Fn, while there are only Cn and C2
n

mappings for external and internal regrets, respectively.
Therefore, we want to design an algorithm that can mini-

mize the swap regret. Key notations for the whole paper are
summarized in Table I.

TABLE I: Summary of Key Notations

Notations Definition
N ; N The number of flows; the set of all the flows
Wn; W The action set for flow n; the space of all

combinations of flows’ actions
Cn The number of actions for flow n

W;Wt An action profile; an action profile in round t
un(Wt); un(W) The utility for flow n in round t given action

profile Wt; the expected utility for flow n
conditioned on the action profile W

t; T The round of time; the total number of rounds
P t
n := {ptw : ∀w ∈ Wn} The probability distribution over Wn for

mixed strategies
wt

n The cwnd selected by flow n in round t
Rext

n (T ); Rint
n (T ); Rswa

n (T ) The external, internal and swap regret for flow
n up to round T

Qt
n,w A meta-distribution in round t, i.e., Qt

n,w :=[
qt
w,w′

]
w′∈Wn

Qt
n The meta-distribution matrix with each row

being a meta-distribution Qt
n,w

P̂T The empirical distribution of joint actions of
all flows over T rounds

IV. THE LUC ALGORITHM

To address the problem of learning for the repeated un-
known general-sum game with bandit feedback for end-to-
end congestion control, one must balance the tradeoff between
exploration and exploitation. The exploration means trying
different actions to know more about the payoff for each
action, and the exploitation means playing more often with
the actions that might be optimal. Such a tradeoff has been
thoroughly studied in the domain of multi-armed bandits. In
our problem, each agent (i.e., flow) can be regarded as playing
a non-stochastic multi-armed bandit against a non-oblivious
adversary [48], as the utility for an agent is determined by
all agents (flows). To tackle the non-oblivious adversary, one
must randomize his/her decisions.

Therefore, the LUC algorithm uses a mixed strategy to
choose actions, i.e., each w ∈ Wn is chosen with probability
ptw. Then, denote by P t

n :=
[
ptw
]
w∈Wn

the distribution on
the action set Wn, which is a row vector of the chosen
probabilities and

∑
w∈Wn

ptw = 1. The basic idea of LUC is

to assign more probabilities to the cwnd (or srate) with more
utilities.



However, the solution in [48] can only minimize the external
regret, which is not enough for our objectives including the
convergence to correlated equilibria, as discussed in Sec. II.
One must minimize the internal regret [34] to achieve the
correlated equilibria.

To achieve our objectives, we adopt the swap-regret-
minimizing framework by [24] to minimize the swap regret,
which is the key to minimizing the external regret and internal
regret at the same time. We first need to model all the actions
in Wn to form a Markov chain with a transition matrix,
denoted by Qt

n, being updated by the end of each round with
the obtained utility. Then, the LUC algorithm chooses each
w ∈ Wn according to the stationary distribution of the Markov
chain.

We create a transition probability vector called meta-
distribution for each w ∈ Wn, denoted by Qt

n,w :=[
qtw,w′

]
w′∈Wn

, where
∑

w′∈Wn

qtw,w′ = 1. The transition matrix

Qt
n is a Cn×Cn matrix with each row being Qt

n,w. Then, P t
n

is a solution to the following system of linear equations:

P t
n = P t

nQt
n. (5)

Intuitively, such a Markov chain models the situation where at
the beginning of a round, agent n first chooses w′, but before
sending packets, the agent regrets choosing w′ and chooses
w instead (w′, w ∈ Wn and they can be identical). In such a
way, the probability of directly choosing w ∼ P t

n is equivalent
to the probability of first choosing meta-distribution Qt

n,w′ for
any w′ ∼ P t

n and then choosing w ∼ Qt
n,w′ .

The update for the transition probability matrix is done by
the exponential-weight technique and the process is described
as follows. After obtaining utility xt

w′ := ut
n(w

′;Wt
−n) for the

chosen wt
n, the reward of choosing w′ instead of w is defined

as follows:

X̂t
w,w′ :=

1[wt
n = w′]ptw (xt

w′ + β)

ptw′
, (6)

which is a division of the total reward xt
w′ plus a bias

parameter β ∈ [0, 1] according to the stationary distribution.
Denote by Ŝt

w,w′ = Ŝt−1
w,w′ +X̂t

w,w′ the variable for tracking
the biased estimated reward pair w,w′ ∈ Wn. Then, with
Ŝt
w,w′ , we can update the transition probability from w to w′

as follows:

qt+1
w,w′ = (1− λ)

exp (ηŜt
w,w′)∑

w′′∈Wn

exp (ηŜt
w,w′′)

+ λP0, (7)

where ηt is a non-increasing and positive parameter controlling
the learning rate, P0 is the initial distribution among actions
learned from past experience, and λ ∈ (0, 1) is a tradeoff
parameter. Thus, with P0, we can utilize offline training with
traces to improve learning efficiency. If learning from scratch,
we can let P0 be the uniform distribution among actions. The
possible values of those parameters are given in Theorem 1.
Note that Ŝt

w,w′ will not increase if w′ is not chosen in round
t because of the definition of X̂t

w,w′ . This shows that (7) helps

trade off between exploration and exploitation: if an action is
not chosen for a long time or the action always suffers a lower
loss, the probability of choosing it will also increase.

Algorithm 1 The LUC algorithm

1: procedure LUC(n,Wn, η, β, λ, P0)
// Initialization

2: Set q1w,w′ = 1
Cn

and Ŝ0
w,w′ = 0,∀w,w′ ∈ Wn

3: for t = 1, 2, 3, . . . do
4: Calculate the distribution on the action set by

solving the equation P t
n = P t

nQt
n

5: Choose a wt
n ∼ P t

n and send packets accordingly
6: Observe feedback and calculate utility ut

n for the
chosen wt

n

// Update each meta-distribution
7: for w ∈ Wn do
8: Calculate X̂t

w,w′ ,∀w′ ∈ Wn based on (6)
9: Ŝt

w,w′ = Ŝt−1
w,w′ + X̂t

w,w′ ,∀w′ ∈ Wn

10: Calculate Qt+1
w based on (7)

The LUC algorithm is described in Alg. 1. At beginning, all
the meta-distributions are set with q1w,w′ = 1

Cn
, as we know

little about the utilities for each cwnd (or srate) in advance.
Then, initialize Ŝ0

w,w′ to be zero for all w,w′ ∈ Wn, as shown
in Line 2. Lines 4 to 6 show the process of calculating the
distribution and observing the utility. The update for meta-
distributions is described in Lines 7 to 10.

V. ANALYTICAL RESULTS

A. Regret Bound

Recall that Cn is the number of actions in Wn. Then,
the swap regret defined in (4) for a flow playing the LUC
algorithm is bounded by the following theorem.

Theorem 1. Let P0 be a uniform distribution, and let

δ ∈ (0, 1), β =
√

ln(2Cnδ−1)
T , η = 0.25

√
lnCn

T , and

λ = 0.5Cn

√
lnCn

T . When T ≥ C2
n, the cumulative swap regret

for flow n playing the LUC algorithm over T rounds is upper
bounded by O(Cn

√
T log(Cn/δ)) with probability at least

1− δ.

Proof Sketch. We need to prove the instantaneous regret
bound for the swap regret, which is a stronger notion than
the expected regret bound. However, the existing analysis
techniques for the swap-regret-minimizing framework by [24]
are only for the expected regret bound. Thus, we give a novel
martingale-based analysis to derive a high-probability bound
for any instantaneous actions and rewards.

In addition, we take the randomness of all flows into consid-
eration. Although the proof is for each agent, the martingale
sequence constructed in the proof is with respect to the past
history of all flows. In the following, we omit subscript n in
some notations for brevity.



The proof starts with a key step to decompose the swap
regret bound as follows for any swap function F ∈ F such
that F (w) ∈ Wn:

max
F∈F

T∑
t=1

∑
w∈Wn

1[wt
n = w]xt

F (w) −
T∑

t=1

∑
w∈Wn

1[wt
n = w]xt

w

= max
F∈F

[
T∑

t=1

∑
w∈Wn

1[wt
n = w]xt

F (w) −
T∑

t=1

∑
w∈Wn

ptwx
t
F (w)

]

+

[
T∑

t=1

∑
w∈Wn

ptwx
t
F (w) −

T∑
t=1

∑
w∈Wn

∑
w′∈Wn

qtw,w′X̂t
w,w′

]

+

T∑
t=1

[ ∑
w∈Wn

∑
w′∈Wn

qtw,w′X̂t
w,w′ − 1[wt

n = w]xt
w

]
,

(8)
where we have decomposed the regret into three groups of
terms.

For the first group of terms, we construct a martingale
difference sequence, and apply Azuma’s inequality to bound
the term with a high probability.

For the second group of terms, we need to fur-
ther decompose qtw,w′ into the combination of q̂tw,w′ :=

exp (ηŜt
w,w′ )∑

w′′∈Wn

exp (ηŜt
w,w′′ )

and P0. The key to bounding this

term is to utilize the updating property for q̂tw,w′ to

bound the difference between
T∑

t=1

∑
w∈Wn

∑
w′∈Wn

qtw,w′X̂t
w,w′

and
T∑

t=1

∑
w∈Wn

max
w′∈Wn

X̂t
w,w′ . Then, by constructing a super-

martingale difference sequence, we can further bound the
whole group of terms.

The third group of terms can be easily bounded by utilizing
the property that ptw′ :=

∑
w∈Wn

ptwq
t
w,w′ .

Note that Theorem 1 works for each flow playing the
LUC algorithm. As each flow can be regarded as playing
the adversarial multi-armed bandit problem [48], we can
compare our results with the one in [48]. The key part of
the analysis is to bound the regret with the swap functions
instead of a fixed action in the external-regret analysis in [48],
which guarantees the convergence to correlated equilibrium
as discussed in Theorem 2. Furthermore, the analysis of our
regret bound considers the randomness of all agent’s actions.
More importantly, we give a high-probability bound for the
instantaneous swap regret, which is stronger than the expected
regret studied in the literature.

If considering the time-averaged swap regret, LUC has
an upper bound for the time-averaged swap regret of
O(Cn

√
logCn)
T . This means if playing LUC for a long time,

both the external regret and internal regret are minimized, i.e.,
the time-averaged external regret and internal regret vanish
asymptotically.

Regarding the optimality of the convergence rate, although
our upper bound has a gap of O(

√
Cn) from the lower

bound [25] of Ω(
√
TCn logCn), it is the best result so far

for the exponential-weighting-based algorithm with the utility
ranging in [0, 1]. However, the lower bound in [25] is for the
full-information feedback, and it still remains an open problem
whether the upper bound is tight or the lower bound is tight
for the bandit feedback.

B. Convergence to Correlated Equilibria

Theorem 2 shows that the system can converge to an ϵ-
correlated equilibrium if every flow in the network plays
the LUC algorithm, by using the fact that the time-averaged
internal-regret of each flow vanishes asymptotically over
rounds.

Theorem 2. If every flow n ∈ N plays the LUC algorithm for
T rounds, then the empirical distribution of the joint actions
played by all flows P̂T is an ϵ-correlated equilibrium with
probability at least 1− δ for δ ∈ (0, 1).

Proof. As explained in Sec. III, the swap regret can also boil
down to the internal regret. By the swap-regret bound proved
in Theorem 1 and the union bound over all flows, LUC has
the internal regret for each flow n bounded for any action
pairs w,w′ ∈ Wn with the probability at least 1 − δ for any
δ ∈ (0, 1) and n ∈ N :

T∑
t=1

rt(w,w′),n ≤ O(max
n∈N

Cn

√
T log(CnN/δ)).

Dividing both sides by T , and recalling that P̂T (W) :=

1
T

T∑
t=1

1 [Wt = W] ,W ∈ W , we have for any flow n ∈ N

playing LUC and for any w,w′ ∈ Wn∑
W:wn=w

P̂(W) (un (w
′;W−n)− un (W)) = O(max

n∈N
Cn

√
log(CnN/δ)

T
),

which coincides with the definition of the ϵ-correlated equi-

libria in Sec. III by letting ϵ = O(max
n∈N

Cn

√
log(CnN/δ)

T ).

The above theorem implies the existence of correlated
equilibrium, as ϵ → 0 when T → ∞. If every flow involved
in the game plays the LUC algorithm together, the following
corollary guarantees that the ϵ-correlated equilibrium can be
found in a polynomial number of rounds in expectation.

Corollary 1. Let δ ∈ (0, 1). Then, with probability at least
1− δ, after T = O(max

n∈N
C2

n log(CnN/δ)
ϵ2 ) rounds, the empirical

distribution P̂T of the joint actions played by all flows with the
LUC algorithm is an ϵ-correlated equilibrium for the unknown
general-sum game between multiple flows.

Proof. By Theorem 2, with probability at least 1− δ, we can
find an ϵ-correlated equilibrium for a game with N flows in
T rounds. Then, solve the following equation for ϵ:

ϵ = O(max
n∈N

Cn

√
log(CnN/δ)

T
),

which gives T = O(max
n∈N

C2
n log(CnN/δ)

ϵ2 ).



Thus, with the LUC algorithm played by all flows, corre-
lated equilibria can be achieved with theoretical guarantees.

C. Time and Space Complexity

In each round, the most time-consuming parts are the
calculation of the stationary distribution for the Markov chain,
and the updating of Cn meta-distributions. Regarding the
calculation of the stationary distribution for the Markov chain,
each flow needs O(C2

n) time for Cn states [50]. Then, as for
updating the meta-distributions, each meta-distribution needs
O(Cn) time to update Cn cwnd (or srate). Therefore, the time
complexity of LUC is O(C2

n). Regarding the space complexity,
each meta-distribution requires O(Cn) space for Cn actions.
Therefore, the space complexity for LUC is O(C2

n) for Cn

meta-distributions.
As analyzed above, both the time and space complexities

increase quadratically only with Cn, and are not affected by
the scale of the network. Therefore, we can design a smaller
action space for each flow in practice to make the algorithm
more efficient. For example, converting the actions from the
set of cwnd to the change of the cwnd (e.g., increase, decrease,
or remain the same value).

VI. EXPERIMENTS

We have implemented the proposed LUC algorithm with
the same but normalized utility function defined in [20]
through the Linux kernel 5.4.0 based on the congestion
control plane [26], a new API for writing congestion con-
trol algorithms. In this section, we start with fairness-related
experiments in Mininet [51], where LUC is compared with
CUBIC [52] and BBR version 2 [53] (BBR2 for short in the
following). Then, we conduct trace-driven experiments with
Pantheon [27], an evaluation platform for congestion control
algorithms, with an additional comparison to PCC-Vivace [20].
We have released the source code for the experiments in
https://github.com/Zhiming-Huang/luc.
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Fig. 2: The experiment topology.

In the fairness-related experiments, two classic network
topologies recommended by IETF TCP evaluation suite [54]
are considered, i.e., the dumbbell and parking lot topologies,
as shown in Fig. 2. The bandwidth of all the links in both

topologies is 50 Mbps, and the delay of each link is shown in
the figures. For both topologies, the queue size on all the links
between two routers is 100 packets. In the dumbbell topology,
there are two flows from h1 to h3 and from h2 to h4, sharing
the same link r1-r2. In the parking lot topology, there are three
flows from h1 to h6, from h2 to h3, and from h4 to h5. We can
see that the flow from h1 to h6 competes with both the other
two flows, while the other two flows are independent of each
other. In the experiments, we use iperf to generate a 30s test
for the performance of the three congestion control algorithms.
As iperf outputs the averaged results (i.e., throughput and
RTT) every 1s, the points at time 0s in Figs. 3 to 5 are the
averaged results in the initial interval from 0s to 1s, and then
we use exponentially weighted moving average technique to
smooth the results in the following time.

In the trace-driven experiments, we use the US cellular
network traces (i.e., T-mobile and Verizon) recorded by the
saturator tool [55] while driving. These traces represent the
time-varying capacity of the networks experienced by a mobile
user, so we can test the adaptability of congestion control
algorithms in such network environments.

A. Dumbbell Results

We first test the scenario where the two flows are ho-
mogeneous, i.e., both the flows adopt the same congestion
control algorithm. The throughput and RTT results for the
homogeneous flows are shown in Figs. 3a, 3b, 3f and 3g.
As we can see, when both flows adopt LUC, they can achieve
a fair performance, because LUC can guarantee a correlated
equilibrium if played by all the flows. However, the other
two congestion control algorithms, i.e., CUBIC and BBR2,
cannot guarantee a fair share between the two flows. This
is because of the intrinsic property of the two congestion
control algorithms (i.e., deterministic strategy) and the subtle
difference in the flow start time, although we have endeavored
to minimize this difference in the experiments by using a script
to control all nodes. The flow on h1 slightly starts ahead of
the flow on h2, and thus the flow on h1 with CUBIC or
BBR2 will first occupy a bit more link bandwidth. Regarding
RTT, we can see that LUC has a lower RTT than CUBIC.
On the other hand, we can observe LUC performs better than
BBR2 and CUBIC in the homogeneous setting in terms of
throughput, while having a higher RTT. This is because LUC
does not explicitly incorporate queuing models like BBR2
does, and the randomized action selection in LUC makes it
less conservative when it comes to utilizing network buffers,
leading to increased queue lengths.

We also conduct experiments for the heterogeneous flow,
i.e., the two flows adopt different congestion control algo-
rithms, as shown in Figs. 3c to 3e and Figs. 3h to 3j. When
BBR2 and LUC compete with each other, BBR2 prevails at
first but their gap gradually decreases due to the benefits
of learning. On the other hand, LUC can achieve a similar
throughput as CUBIC. Regarding RTT, we can observe in
Fig. 3h that at the first few intervals, both LUC and BBR2
suffer a high RTT because they are competing with each other
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Fig. 3: The experiment results for the dumbbell topology.

to exhaust the network bandwidth. However, the RTTs for both
algorithms are decreasing over time, meaning that the network
is getting less congested. Therefore, LUC is friendly to and
competitive with other TCP flows.

B. Parking Lot Results

The results of the parking lot topology are shown in Figs. 4
and 5. Similar to the dumbbell topology, we first test the
homogeneous flows in the parking lot topology, as shown in
Figs. 4a to 4c and Figs. 5a to 5c. The flow from h1 to h6 will
suffer a loss if any one of the other two flows suffers, i.e.,
the flow from h1 to h6 has a higher probability of suffering
a loss and thus results in a lower throughput than the other
two flows. As we can see, when all the three flows play the
same congestion control algorithm, LUC always guarantees
that the performance gaps between flows are similar and not
excessive. On the other hand, CUBIC and BBR2 have a large
performance gap between flow h1 to h6 and the other two
flows. This reflects LUC’s ability to achieve a stable correlated
equilibrium. Also, CUBIC and BBR2 incur a higher RTT than
LUC, because CUBIC and BBR2 will increase the srate to
probe for possible higher bandwidth, while LUC can maintain
a low RTT.

Then, we perform three different heterogeneous flow set-
tings in the parking lot topology for a different 4-hop flow
(i.e., flow h1 to h6). In the first heterogeneous flow setting,
flow h1 to h6 adopts LUC, flow h2 to h3 adopts CUBIC,
and flow h4 to h5 adopts BBR2, and the results are shown in
Figs. 4d and 5d. In the second setting, the 4-hop flow h1 to
h6 adopts CUBIC, flow h2 to h3 adopts BBR2 and flow h4

to h5 adopts LUC, as shown in Figs. 4e and 5e. In the third
setting, the 4-hop flow h1 to h6 would be BBR2, and the other
two flows adopt CUBIC and LUC, respectively, as shown in
Figs. 4f and 5f. We can see that when the 4-hop flow adopts
LUC or CUBIC, it will concede the link bandwidth to the other
two flows, but LUC still maintains a higher throughput than
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Fig. 4: The throughput results for the parking lot topology.
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Fig. 5: The RTT results for the parking lot topology.



that of CUBIC, as shown in Figs. 4d and 4e. However, when
the 4-hop flow adopts BBR2, it will still occupy a comparable
link bandwidth with the other two flows, as shown in Fig. 4f.
Overall, from the above experiments, we can see that LUC is
friendly but competitive to other flows, and maintains fairness
in allocating the link bandwidth.

C. Trace-driven Experiments
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Fig. 6: The trace-driven experiment results on Pantheon.

For each trace, we did five independent runs of experiments,
and the mean results for the trace-driven experiments produced
by Pantheon are shown in Fig. 6. Pantheon evaluates an
algorithm based on two metrics, i.e., mean throughput and
95th-percentile one-way delay. We can see that LUC can
better balance the tradeoff between the average throughput and
delay in these two metrics for the T-mobile network than the
other three algorithms. In the Verizon LTE network, LUC still
performs better than TCP CUBIC and Vivace. Although BBR2
is better than LUC in the Verizon LTE network, from the
emulation results in Mininet, we know that the main advantage
of LUC over BBR2 is the guarantee of fair allocation for
multiple flows in the network. For both traces, PCC-Vivace
performs not as well as other algorithms, as PCC-Vivace used
by Pantheon runs in user space instead of kernel space, which
may incur some performance loss. On the other hand, as
Pantheon only supports evaluation for a single flow, our future
work remains to conduct trace-driven emulations on multiple
flows. Overall, LUC can guarantee good performance in a
dynamic network environment.

VII. CONCLUSION

In this paper, we formulated the end-to-end congestion
control as a repeated unknown general-sum game with bandit
feedback, and have proposed the LUC algorithm with provable
theoretical guarantees. Furthermore, we have implemented
LUC through the Linux kernel and performed extensive ex-
periments to verify the performance of LUC. For our future
research, we would like to develop more realistic game models
where we relax the assumption that all flows finish an inter-
action within one round, and study whether an equilibrium
for such game models exists and can be obtained by efficient
learning algorithms. We are also interested in using LUC as
a building block to improve the current congestion control
algorithms, such as BBR2.

APPENDIX

Let Ft := σ ({W1, . . . ,Wt}) be the σ-algebra generated
by previous actions of all agents by the end of round t. Then,
denote by Et[·] := Et[· | Ft−1] the expectation conditioned
on the Ft−1. Let xt

w := ut
n(w;Wt

−n). Denote by ŜT
w :=

T∑
t=1

∑
w′∈Wn

qtw,w′X̂t
w,w′ and ST

w :=
T∑

t=1

∑
w∈Wn

1[wt
n = w]xt

w.

As the proof is for a single agent n, we will omit subscript n
in some notations for brevity.

Proof of Theorem 1. The instantaneous swap regret can be
decomposed as follows

max
F∈F

T∑
t=1

∑
w∈Wn

1[wt
n = w]xt

F (w) −
T∑

t=1

∑
w∈Wn

1[wt
n = w]xt

w

= max
F∈F

[
T∑

t=1

∑
w∈Wn

1[wt
n = w]xt

F (w) −
T∑

t=1

∑
w∈Wn

ptwx
t
F (w)

]

+


T∑

t=1

∑
w∈Wn

ptwx
t
F (w) −

T∑
t=1

∑
w∈Wn

∑
w′∈Wn

qtw,w′X̂t
w,w′︸ ︷︷ ︸

=:(a)



+

T∑
t=1


∑

w∈Wn

∑
w′∈Wn

qtw,w′X̂t
w,w′ − 1[wt

n = w]xt
w︸ ︷︷ ︸

=:(b)

 ,

(9)
First, notice that

∑
w∈Wn

1[wt
n = w]xt

F (w) −
∑

w∈Wn

ptwx
t
F (w) is

a martingale difference sequence, because∑
w∈Wn

Et

[
1[wt

n = w]xt
F (w)

]
−

∑
w∈Wn

Et

[
ptwx

t
F (w)

]
=

∑
w∈Wn

Et

[
ptwx

t
F (w) − ptwx

t
F (w)

]
= 0

Furthermore, the martingale difference sequence is bounded:∣∣∣∣∣ ∑
w∈Wn

1[wt
n = w]xt

F (w) −
∑

w∈Wn

ptwx
t
F (w)

∣∣∣∣∣ ≤ 1,

where the inequality is due to that
∑

w∈Wn

1[wt
n = w]xt

F (w) ∈

[0, 1] and
∑

w∈Wn

ptwx
t
F (w) ∈ [0, 1]. Let δ′ ∈ (0, 1). By applying

Azuma’s inequality, we have that with probability at least 1−
δ′,
T∑

t=1

∑
w∈Wn

1[wt
n = w]xt

F (w)−
T∑

t=1

∑
w∈Wn

ptwx
t
F (w) ≤ 2

√
T ln

1

δ′
.

(10)
Then, we show how to bound (b) first as follows:

(b) =
∑

w∈Wn

∑
w′∈Wn

qtw,w′X̂t
w,w′ −

∑
w∈Wn

1[wt
n = w]xt

w

=
∑

w∈Wn

∑
w′∈Wn

ptwq
t
w,w′(1[wt

n = w′]xt
w′ + β)

ptw′
−
∑

w∈Wn

1[wt
n = w]xt

w

=
∑

w′∈Wn

(1[wt
n = w′]xt

w′ + β)−
∑

w∈Wn

1[wt
n = w]xt

w = Cnβ,



where the third equality is due to the definition of ptw in (5).
Next, we show how to bound (a) as follows. Let q̂tw,w′ :=
qt
w,w′−λP0

1−λ be the distribution without mixing with P0. Then,
we obtain:

− (a) = −
∑

w∈Wn

T∑
t=1

∑
w′∈Wn

qtw,w′X̂t
w,w′ = −

∑
w∈Wn

T∑
t=1

∑
w′

(1− λ)q̂tw,w′X̂t
w,w′ −

∑
w∈Wn

T∑
t=1

∑
w′

λP0X̂
t
w,w′

≤ −
∑

w∈Wn

T∑
t=1

∑
w′

(1− λ)q̂tw,w′X̂t
w,w′ =

∑
w∈Wn

T∑
t=1

1− λ

η

(
ln

∑
w′′∈Wn

q̂tw,w′′ exp

(
η(X̂t

w,w′′ −
∑

w′∈Wn

q̂tw,w′X̂T
w,w′)

))
︸ ︷︷ ︸

=:(c)

−
∑

w∈Wn

T∑
t=1

1− λ

η

(
ln

∑
w′′∈Wn

q̂tw,w′′ exp
(
ηX̂t

w,w′′

))
.

(11)
Then, notice that qtw,w′ ≥ λP0 = λ

Cn
and by the fact that

(1 + β)ηCn ≤ λ, we further have that

ηX̂t
w,w′′ =

ηptwq
t
w,w′′(1[wt

n = w]xt
w + β)

ptw′′qtw,w′′
≤

ptwq
t
w,w′′(1[wt

n = w]xt
w + β)ηCn

ptw′′λ
≤ 1.

Then, by using inequality lnx ≤ x−1 and exp (x) ≤ 1+x+x2

for all x ≤ 1, we have (c) bounded as follows:

(c) = ln
∑

w′′∈Wn

q̂tw,w′′ exp
(
ηX̂t

w,w′′

)
− η

∑
w′

q̂tw,w′X̂t
w,w′

≤
∑

w′∈Wn

q̂tw,w′ exp
(
ηX̂t

w,w′

)
− 1− η

∑
w′

q̂tw,w′X̂t
w,w′

≤ 1 +
∑

w′∈Wn

q̂tw,w′ηX̂t
w,w′ +

∑
w′∈Wn

q̂tw,w′(ηX̂t
w,w′)2 − 1− η

∑
w′

q̂tw,w′X̂t
w,w′

=
∑

w′∈Wn

ptw q̂
t
w,w′(1[wt

n = w]xt
w + β)

ptw′
η2X̂t

w,w′ ≤
∑

w′∈Wn

1 + β

1− λ
η2X̂t

w,w′ ,

where the last inequality is due to that q̂tw,w′ ≤ qt
w,w′

1−λ .
Substituting the above equation in (11) and recalling that

q̂tw,w′ =
exp

(
ηŜt−1

w,w′

)
∑
w′′

exp
(
ηŜt−1

w,w′′

) , we obtain for any F ∈ F that

− (a) ≤
∑

w′∈Wn

T∑
t=1

∑
w∈Wn

(1 + β)ηX̂t
w,w′ −

∑
w∈Wn

T∑
t=1

1− λ

η

ln

∑
w′∈Wn

exp
(
ηŜt

w,w′

)
∑

w′′∈Wn

exp
(
ηŜt−1

w,w′′

)


≤
∑

w∈Wn

T∑
t=1

∑
w′∈Wn

(1 + β)ηX̂t
w,w′ −

∑
w∈Wn

1− λ

η

(
ln

( ∑
w′∈Wn

exp
(
ηŜT

w,w′

))
− ln

( ∑
w′∈Wn

exp
(
ηŜ0

w,w′

)))

≤
∑

w∈Wn

(1 + β)ηCn max
w′∈Wn

Ŝt
w,w′ +

1− λ

η

∑
w∈Wn

lnCn − 1− λ

η

∑
w∈Wn

ln

(
exp max

w′∈Wn

ηŜT
w,w′

)
≤
∑

w∈Wn

((1 + β)ηCn + λ) max
w′∈Wn

Ŝt
w,w′ +

Cn lnCn

η
−
∑

w∈Wn

max
w′∈Wn

Ŝt
w,w′

≤ − (1− (1 + β)ηCn − λ)
∑

w∈Wn

max
w′∈Wn

Ŝt
w,w′ +

Cn lnCn

η
−
∑

w∈Wn

max
w′∈Wn

Ŝt
w,w′

≤ − (1− (1 + β)ηCn − λ)
∑

w∈Wn

Ŝt
w,F (w) +

Cn lnCn

η
−
∑

w∈Wn

max
w′∈Wn

Ŝt
w,w′ ,

(12)
where the last inequality is due to that (1 + β)ηCn ≤ λ ≤ 1

2 .
Notice that for any w,w′ ∈ Wn, and by the fact that exp(x) ≤
1 + x+ x2 for x ≤ 1 we have that

Et exp
(
βptwx

t
w′ − βX̂t

w,w′

)
= Et exp

(
ptwβx

t
w′ − β

1[wt
n = w′]ptwx

t
w′

ptw′

)
· exp

(
− β2

ptw′

)
≤

(
1 +Et

[
ptwβx

t
w′ − β

1[wt
n = w′]ptwx

t
w′

ptw′

]
+Et

[
ptwβx

t
w′ − β

1[wt
n = w′]ptwx

t
w′

ptw′

]2)
· exp

(
− β2

ptw′

)
≤
(
1 +

β2

ptw′

)
· exp

(
− β2

ptw′

)
≤ 1,

where the last inequality is due to 1 + x ≤ exp(x). Thus, we
have that

E

(
β

T∑
t=1

ptwx
t
w′ −

T∑
t=1

βX̂t
w,w′

)
≤ 1,

and by Markov inequality, we obtain with probability at least
1− δ′ that

T∑
t=1

ptwx
t
w′ −

T∑
t=1

X̂t
w,w′ ≤ β−1 ln

1

δ′
,

where δ′ ∈ (0, 1). Then, by union bound, we can continue to
bound (12) with probability at least 1 − δ for any δ ∈ (0, 1)
as follows:

−(a) ≤ −(1− (1 + β)ηCn − λ)

( ∑
w∈Wn

T∑
t=1

ptwx
t
F (w) −

∑
w∈Wn

β−1 ln
(Cn))

2

δ

)
+

Cn lnCn

η

≤ ((1 + β)ηCn + λ)T +
Cn lnCn

η
+ 2Cnβ

−1 ln
Cn

δ
−

T∑
t=1

∑
w∈Wn

ptwx
t
F (w),

where the last inequality is due to the fact that (1+β)ηCn ≤
λ ≤ 1/2, and xt

F (w) ≤ 1.
By using the union bound to combine (10), and substituting

the above results into (9), we have with probability at least
1− δ that

max
F∈F

T∑
t=1

Et

∑
w∈Wn

1[wt
n = w]xt

F (w) −
T∑

t=1

Et

∑
w∈Wn

1[wt
n = w]xt

w

≤ ((1 + β)ηCn + λ)T +
Cn lnCn

η
+ 2Cnβ

−1 ln
Cn

δ
+ CnTβ + 2

√
T ln

2

δ
.

The theorem follows by letting β =
√

ln(2Cnδ−1)
T , η =

0.25
√

lnCn

T , and λ = 0.5Cn

√
lnCn

T .
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