
Poster: Multi-agent Combinatorial Bandits with
Moving Arms

Zhiming Huang, Bingshan Hu, Jianping Pan
Department of Computer Science, University of Victoria, Victoria, BC V8P 5C2, Canada

Abstract—In this paper, we study a distributed stochastic
multi-armed bandit problem that can address many real-world
problems such as task assignment for multiple crowdsourcing
platforms, traffic scheduling in wireless networks with multi-
ple access points and caching at cellular network edge. We
propose an efficient algorithm called multi-agent combinatorial
upper confidence bound (MACUCB) with provable performance
guarantees and low communication overhead. Furthermore, we
perform extensive experiments to show the effectiveness of the
proposed algorithm.

Index Terms—Online learning, multi-armed bandits, multi-
agent combinatorial bandits, upper confidence bound

I. INTRODUCTION

We study an innovative distributed multi-armed bandit
problem called multi-agent combinatorial bandits with mov-
ing arms (MACMAB-M) involving an agent set K :=
{1, 2, . . . ,K} and an arm set N := {1, 2, . . . , N}. Given
a time horizon of T rounds, each arm can randomly move
across each agent over the time, resulting in the variance
of the available arms At,k ⊆ N to agent k ∈ K in each
round t, and, apparently, we have

⋃
k∈K

At,k = N. Each agent

k needs to play a solution St,k ⊆ At,k (i.e., a combination
of arms subject to certain constraints defined by the real-
world problems) and observes the random reward of each
played arm θt(n),∀n ∈ St,k in each round t. For each arm
n, θt(n) is drawn from a fixed but unknown distribution,
and is independent and identically distributed (i.i.d) over the
time. The objective of each agent is to accumulate as many
rewards as possible. As the reward distribution for each arm is
unknown a priori, each agent faces a dilemma between playing
the empirically best arms to achieve higher rewards (i.e.,
exploitation) and playing other arms to explore more about
their underlying reward distribution (i.e., exploration).

Many real-world multi-agent problems can be formulated
as MACMAB-M. For example, in the problem of task assign-
ment for multiple crowdsourcing platforms such as Amazon
Mechanical Turk, Amazon Flex and Testlio, the tasks are
usually large projects, which can be divided into multiple
subtasks for different workers. Thus, each platform can be
regarded as an agent that needs to assign an incoming task
to a group of workers with unknown skill levels. The rewards
are based on the quality of the completed task, which is a
random variable depending on the skill level of workers as also
assumed in [1]. The workers can move across the platforms
and thus the available workers vary for each platform (i.e., the
moving arm setting). Another example is the traffic scheduling

problem in wireless networks with K access points (APs) and
N clients moving across APs. In each scheduling cycle, a
client can only connect to one AP, and each AP can schedule
a subset of connected clients to transmit multiple packets
simultaneously by using the multiplexing technologies. A
delivered packet generates a reward that is dependent on the
value of information (e.g., age of information) the packet
contains.

Our contributions are summarized as follows. First, to the
best of our knowledge, this is the first work that studies
the MACMAB-M problem, which integrates important factors
such as multiple agents, combinatorial arms, and moving arms
based on a bandit model. Second, we design an efficient multi-
agent learning algorithm called multi-agent combinatorial up-
per confidence bound (MACUCB) with provable performance
guarantees and low communication overhead. Furthermore, we
conduct extensive experiments to show the effectiveness and
efficiency of the proposed algorithm.

II. THE MACUCB ALGORITHM

We adopt the idea of upper confidence bound (UCB) [2] as
the basis of the proposed algorithm, which is to play a solution
with the highest UCB estimates. The UCB estimate by agent
k for arm n in round t is defined as follows:

Ut,k(n) = θ̂t−1(n) +

√
1.5 ln(t− 1)

Ot−1(n)
,∀n ∈ At,k. (1)

where θ̂t(n) is the empirical mean (or sample-mean) reward
and Ot(n) is the total number of times that arm n has been
played, by the end of round t. As we can see, when an arm is
not played for many times, its UCB estimate will become large
so the algorithm will play this arm to explore more about its
true mean reward. When am arm is played sufficiently, it can
be proved that its UCB estimate is very close to its true mean
reward. Thus, UCB can help us balance the tradeoff between
exploration and exploitation.

On the other hand, to reduce the communication overhead,
we can just transmit θ̂t−1(n) and Ot−1(n) for a moving arm n
instead of all its past playing history. The information can be
transmitted through pairwise communication between agents
or can be directly carried by the arm itself (e.g., a worker can
carry her curriculum vitae in the aforementioned crowdsourc-
ing application). Thus, the communication overhead is at most
O(N) in each round for at most N arms moving.

The MACUCB algorithm is described as follows. In each
round t, each agent k first observes the set of available arms



At,k, and calculates the UCB estimate defined in (1) for each
arm n ∈ At,k. Each agent then plays a solution St,k with the
highest sum of the UCB estimates. After observing the reward
for each played arm, each agent updates θ̂t(n) and Ot(n)
for all arms in At,k. By the end of round t, each agent can
transmit the information about the moving arms by pairwise
communication (or the information is carried by each moving
arm itself).

It can be proved that the regret of MACUCB (i.e., the
performance gap with regard to the optimal algorithm that
can only be obtained when the true mean reward of each arm

is known a priori) is O
(

NM
4
3 log T

∆min

)
, where ∆min is the gap

between the sum of expected rewards for the optimal and best
suboptimal solutions, and M is the maximum number of arms
in a solution played in each round.

III. EVALUATIONS

We have conducted evaluations in MATLAB to compare the
proposed MACUCB algorithm with the ε-Greedy algorithm [2]
which is an oft-used algorithm for reinforcement learning,
and the LFG algorithm [1] which can be regarded as the
MACUCB algorithm without communication between agents.
The basic idea of ε-Greedy is to randomly play a solution with
probability ε (i.e., exploration), and play the currently known
best solution with probability 1− ε (i.e., exploitation), where
ε := min

{
1, cNt

}
decreases with time. Note that c is a input

parameter determining the initial exploration rate. We perform
ε-Greedy with a full information setting, i.e., each agent will
broadcast the information about the played arms in each round,
and let c = 0.01 as we found with which ε-Greedy performs
best in our evaluations.

The evaluations are performed on two bandit settings.
In Setting 1, the total number of agents is K = 3,
the total number of arms is N = 10 and the max-
imum number of arms can be played in each round
is M = 3. The rewards of arms in each round are
i.i.d. drawn from Bernoulli distributions with mean rewards
0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55, 0.5. Setting 2 is
more complex. We have K = 10, N = 100, and M = 10. The
reward of each arm also follows a Bernoulli distribution with
a randomly generated mean value. The reward distributions
for both settings are not known a priori to the three compared
algorithms (and we denote by Opt the optimal algorithm that
knows the reward distributions a priori). The results are the
average of 100 independent experiments. We do not plot the
error bars as they are too small to be observed clearly.

a) Cumulative regret and time-averaged reward: We can
see that in both settings, the cumulative regret of MACUCB is
the lowest compared to that of LFG and ε-Greedy (c = 0.01),
as shown in Figs. 1a and 1c. Regarding the time-averaged
reward, all considered algorithms can converge to the optimal
solution, but MACUCB is the quickest for both settings, as
shown in Fig. 1b and 1d. Note that in Fig. 1c, MACUCB still
has a learning curve (i.e., the cumulative regret increases at
the beginning) but is too small to be observed clearly when
comparing with other algorithms.

0 2 4 6 8 10

t 10
4

0

20

40

60

80

100

120

C
u
m

u
la

ti
v
e
 R

e
g
re

t

MACUCB LFG -Greedy (c = 0.01)

(a) Setting 1: Cumulative Regret

0 2 4 6 8 10

t 10
4

5.88

5.89

5.9

5.91

5.92

5.93

T
im

e
-a

v
e
ra

g
e
d
 R

e
w

a
rd

MACUCB LFG -Greedy (c = 0.01) Opt

(b) Setting 1: Time-averaged Reward

0 2 4 6 8 10

t 10
4

0

0.5

1

1.5

2

2.5

C
u
m

u
la

ti
v
e
 R

e
g
re

t

10
4

MACUCB LFG -Greedy (c = 0.01)

(c) Setting 2: Cumulative Regret

0 2 4 6 8 10

t 10
4

63.5

64

64.5

65

T
im

e
-a

v
e
ra

g
e
d
 R

e
w

a
rd

MACUCB LFG -Greedy (c = 0.01) Opt

(d) Setting 2: Time-averaged Reward

Fig. 1: The evaluation results for both settings.

0 2 4 6 8 10

t 10
4

0

5

10

15

20

25

30

35

N
u
m

b
e
r 

o
f 
M

e
s
s
a
g
e
s

MACUCB LFG -Greedy (c = 0.01)

(a) Setting 1

0 2 4 6 8 10

t 10
4

0

200

400

600

800

1000

1200

N
u
m

b
e
r 

o
f 
M

e
s
s
a
g
e
s

MACUCB LFG -Greedy (c = 0.01)

(b) Setting 2

Fig. 2: The communication overhead for the algorithms.

b) Communication overhead and time complexity: The
results of communication overhead for both settings are shown
in Fig. 2, where LFG has 0 messages as it does not commu-
nicate, and we can see that MACUCB is efficient in terms
of the number of messages, with 10 and 100 messages per
round in Settings 1 and 2, respectively, which corresponds to
the analyzed communication overhead O(N).

TABLE I: The time consumption for each agent over T rounds

Algorithm MACUCB LFG ε-Greedy
Setting 1 0.344 s 0.345 s 0.335 s
Setting 2 3.934 s 3.773 s 3.779 s

Although MACUCB needs to spend a bit more time to
process incoming and outgoing arms, all the algorithms have
the similar performance for both settings, as it can be proved
that their time complexity is O(N logN) for each agent.

REFERENCES

[1] F. Li, J. Liu, and B. Ji, “Combinatorial Sleeping Bandits with Fairness
Constraints,” IEEE Transactions on Network Science and Engineer-
ing (TNSE), 2019.

[2] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time Analysis of the
Multi-armed Bandit Problem,” Machine Learning, vol. 47, no. 2–3, pp.
235–256, 2002.


